Развитие электроэнергетики в рф. Современная электроэнергетика

Главная / Пдд

Промышленность любой страны состоит из большого количества разнообразных отраслей, таких как машиностроение или электроэнергетика. Это те направления, в которых развивается конкретная страна, и у разных государств могут быть различные акценты в зависимости от многих факторов, таких как природные ресурсы, технологическое развитие и так далее. В данной статье речь пойдет об одной очень важной и активно развивающейся на сегодняшний день отрасли промышленности - об электроэнергетике. Электроэнергетика - это отрасль, которая развивалась в течение многих лет постоянно, однако именно в последние годы она начала активно двигаться вперед, подталкивая человечество к использованию более экологичных источников энергии.

Что это такое?

Итак, в первую очередь необходимо разобраться, что вообще представляет собой данная отрасль. Электроэнергетика - это подразделение энергетики, которое отвечает за производство, распределение, передачу и продажу именно электрической энергии. Среди других отраслей данной сферы именно электроэнергетика является самой популярной и распространенной сразу по целому ряду причин. Например, из-за легкости ее дистрибуции, возможности передачи ее на огромные расстояния за кратчайшие промежутки времени, а также из-за ее универсальности - электрическую энергию можно без проблем при необходимости трансформировать в другие такие как тепловая, световая, химическая и так далее. Таким образом, именно развитию данной отрасли огромное внимание уделяют правительства мировых держав. Электроэнергетика - это отрасль промышленности, за которой будущее. Именно так считают многие люди, и именно поэтому вам необходимо более детально ознакомиться с ней с помощью данной статьи.

Прогресс производства электроэнергии

Чтобы вы могли полностью понять, насколько важной является для мира данная отрасль, необходимо взглянуть на то, как происходило развитие электроэнергетики на протяжении всей истории ее существования. Сразу же стоит отметить, что производство электроэнергии обозначается в миллиардах киловатт в час. В 1890 году, когда электроэнергетика только начинала развиваться, производилось всего девять млрд кВт/ч. Большой скачок произошел к 1950 году, когда производилось уже более чем в сто раз больше электроэнергии. С того момента развитие шло гигантскими шагами - каждое десятилетие добавлялось сразу по несколько тысяч миллиардов кВт/ч. В результате к 2013 году мировыми державами производилось в сумме 23127 млрд кВт/ч - невероятный показатель, который продолжает расти с каждым годом. На сегодняшний день больше всего электроэнергии дают Китай и Соединенные Штаты Америки - именно эти две страны имеют наиболее развитые отрасли электроэнергетики. На долю Китая приходится 23 процента вырабатываемой во всем мире электроэнергии, а на долю США - 18 процентов. Следом за ними идут Япония, Россия и Индия - каждая из этих стран имеет как минимум в четыре раза меньшую долю в мировом производстве электроэнергии. Что ж, теперь вам также известна и общая география электроэнергетики - пришло время перейти к конкретным видам этой отрасли промышленности.

Тепловая электроэнергетика

Вы уже знаете, что электроэнергетика - это отрасль энергетики, а сама энергетика, в свою очередь, является отраслью промышленности в целом. Однако разветвление не заканчивается на этом - электроэнергетики имеется несколько видов, некоторые из них очень распространенные и используются повсеместно, другие не так популярны. Существуют и альтернативные области электроэнергетики, где используются нетрадиционные методы, позволяющие добиваться масштабного производства электроэнергии без вреда окружающей среде, а также с нейтрализацией всех негативных особенностей традиционных методов. Но обо всем по порядку.

В первую очередь необходимо рассказать о тепловой электроэнергетике, так как она является самой распространенной и известной во всем мире. Как получается электроэнергия данным способом? Легко можно догадаться, что в данном случае происходит преобразование тепловой энергии в электрическую, а тепловая получается путем сжигания различных видов топлива. Теплоэлектроцентрали можно найти практически в каждой стране - это самый простой и удобный процесс получения больших объемов энергии при малых затратах. Однако именно этот процесс и является одним из самых вредных для окружающей среды. Во-первых, для получения электроэнергии используется природное топливо, которое когда-нибудь гарантированно закончится. Во-вторых, продукты горения выбрасываются в атмосферу, отравляя ее. Именно поэтому и существуют альтернативные методы получения электроэнергии. Однако это еще далеко не все традиционные виды электроэнергетики - есть и другие, и дальше мы сконцентрируемся именно на них.

Ядерная электроэнергетика

Как и в предыдущем случае, при рассмотрении ядерной электроэнергетики можно многое почерпнуть уже из названия. Выработка электроэнергии в данном случае производится на атомных реакторах, где происходит расщепление атомов и деление их ядер - в результате этих действий происходит большой выброс энергии, которая затем и трансформируется в электрическую. Вряд ли кому-то еще неизвестно, что это самая небезопасная электроэнергетика. Промышленность далеко не каждой страны имеет свою долю в мировом производстве ядерной электроэнергии. Любая утечка из такого реактора может привести к катастрофическим последствиям - достаточно вспомнить Чернобыль, а также происшествия в Японии. Однако в последнее время безопасности уделяется все больше внимания, поэтому атомные электростанции строятся и дальше.

Гидроэнергетика

Еще одним популярным способом производства электроэнергии является получение ее из воды. Этот процесс происходит на гидроэлектростанциях, он не требует ни опасных процессов деления ядра атома, ни вредных для окружающей среды сжиганий топлива, но имеет и свои минусы. Во-первых, это нарушение естественного течения рек - на них строятся дамбы, за счет которых создается необходимое течение воды в турбины, благодаря чему и получается энергия. Зачастую из-за строительства дамб осушаются и гибнут реки, озера и другие природные водохранилища, поэтому нельзя сказать, что это идеальный вариант для данной отрасли энергетики. Соответственно, многие предприятия электроэнергетики обращаются не к традиционным, а к альтернативным видам получения электроэнергии.

Альтернативная электроэнергетика

Альтернативная электроэнергетика - это собрание видов электроэнергетики, отличных от традиционных в основном тем, что они не требуют нанесения того или иного вида вреда окружающей среде, а также не подвергают никого опасности. Речь идет о водородной, приливной, волновой и многих других разновидностях. Самым распространенными из них являются ветро- и гелиоэнергетика. Именно на них делается акцент - многие считают, что именно за ними будущее данной отрасли. В чем суть этих видов?

Ветроэнергетика - это получение электроэнергии из ветра. В полях строятся ветряные мельницы, которые работают очень эффективно и позволяют обеспечивать энергией ненамного хуже, чем описанные ранее методы, но при этом для действия ветряков нужен только лишь ветер. Естественно, недостатком данного метода является то, что ветер - это природная стихия, которую невозможно себе подчинить, однако ученые работают над улучшением функциональности ветряных мельниц современности. Что касается гелиоэнергетики, то здесь электроэнергия получается из солнечных лучей. Как и в случае с предыдущим видом, здесь также необходимо работать над увеличением аккумулирующей мощности, так как солнце светит далеко не всегда - и даже если погода безоблачная, в любом случае в определенный момент наступает ночь, когда солнечные панели не способны производить электроэнергию.

Передача электроэнергии

Что ж, теперь вы знаете все основные виды получения электроэнергии, однако, как вы уже могли понять из определения термина электроэнергетики, получением все не ограничивается. Энергию необходимо передавать и распределять. Так, передается по линиям электропередач. Это металлические проводники, которые создают одну большую электрическую сеть во всем мире. Ранее чаще всего использовались воздушные линии - именно их вы можете видеть вдоль дорог, перекинутые от одного столба к другому. Однако в последнее время большую популярность обретают кабельные линии, которые прокладываются под землей.

История развития электроэнергетики России

Электроэнергетика России начала развиваться тогда же, когда и мировая - в 1891 году, когда впервые была удачно осуществлена передача электрической мощности на практически двести километров. В реалиях дореволюционной России электроэнергетика была невероятно слабо развита - годовая выработка электричества на такую огромную страну составляла всего 1,9 млрд кВт/ч. Когда же состоялась революция, Владимир Ильич Ленин предложил реализация которого была начата немедленно. Уже к 1931 году задуманный план был выполнен, однако скорость развития оказалась настолько впечатляющей, что к 1935 году план был перевыполнен в три раза. Благодаря этой реформе уже к 1940 году годовая выработка электроэнергии в России составила 50 млрд кВт/ч, что в двадцать пять раз больше, чем до революции. К сожалению, резкий прогресс был прерван Второй мировой войной, однако после ее завершения работы восстановились, и к 1950 году Советский Союз вырабатывал 90 млрд кВт/ч, что составляло около десяти процентов всеобщей выработки электроэнергии по всему миру. Уже к середине шестидесятых годов Советский Союз вышел на второе место в мире по производству электроэнергии и уступал только Соединенным Штатам. Ситуация оставалась на таком же высоком уровне вплоть до распада СССР, когда электроэнергетика оказалась далеко не единственной отраслью промышленности, которая сильно пострадала из-за этого события. В 2003 году был подписан новый ФЗ об электроэнергетике, в рамках которого в ближайшие десятилетия должно происходить стремительное развитие этой отрасли в России. И страна определенно движется в этом направлении. Однако одно дело - подписать ФЗ об электроэнергетике, и совершенно другое - его реализовать. Именно об этом и пойдет речь далее. Вы узнаете о том, какие на сегодняшний день существуют проблемы электроэнергетики России, а также какие будут выбираться пути для их решения.

Избыток электрогенерирующих мощностей

Электроэнергетика России находится уже в гораздо более хорошем состоянии, чем десять лет назад, так что можно смело сказать, что прогресс идет. Однако на недавно проведенном энергетическом форуме были выявлены основные проблемы этой отрасли в стране. И первая из них - избыток электрогенерирующих мощностей, который был вызван массовой постройкой электростанций низкой мощности в СССР вместо строительства малого количества электростанций высокой мощности. Все эти станции все равно нужно обслуживать, поэтому выхода из ситуации два. Первый - это вывод мощностей из эксплуатации. Этот вариант был бы идеальным, если бы не огромные стоимости такого проекта. Поэтому Россия, скорее всего, будет двигаться в сторону второго выхода, а именно увеличения объема потребления.

Импортозамещение

После введения западных станций промышленность России очень остро ощутила свою зависимость от заграничных поставок - это сильно затронуло и электроэнергетику, где практически ни в одной из современных сфер деятельности полный процесс производства тех или иных генераторов не проходил исключительно на территории РФ. Соответственно, правительство планирует наращивать производственные мощности в нужных направлениях, контролировать их локализацию, а также пытаться максимально избавиться от зависимости от импорта.

Чистый воздух

Проблема заключается в том, что современные российский компании, работающие в сфере электроэнергетики, очень сильно загрязняют воздух. Однако Министерство экологии РФ ужесточило законодательство и стало чаще собирать штрафы за нарушение установленных норм. К сожалению, компании, страдающие от этого, не планируют пытаться оптимизировать свое производство - они бросают все силы на то, чтобы задавить «зеленых» количеством, и требуют смягчения законодательства.

Миллиарды долга

На сегодняшний день суммарный долг пользователей электроэнергии по всей России составляет около 460 миллиардов российских рублей. Естественно, если бы в распоряжении страны были все те деньги, которые ей задолжали, то она могла бы значительно быстрее развивать электроэнергетику. Поэтому правительство планирует ужесточить наказания за просрочки в оплате счетов за электричество, а также будет призывать тех, кто не хочет платить по счетам в будущем, устанавливать собственные солнечные панели и снабжать себя энергией самостоятельно.

Регулируемый рынок

Самая главная проблема отечественной электроэнергетики - это полная регулируемость рынка. В европейских странах регулирование рынка энергетики практически полностью отсутствует, там имеется самая настоящая конкуренция, поэтому отрасль развивается огромными темпами. Все эти правила и регуляции очень сильно тормозят развитие, и в результате РФ уже начала закупки электроэнергии из Финляндии, где рынок практически не регулируется. Единственное решение этой проблемы - переход к модели свободного рынка и полный отказ от регуляции.

Знание истории развития электроэнергетики помогает понять логику выбора направления её развития, природу возникающих перед ней проблем и возможные способы их решения.

Становление электроэнергетики как самостоятельной отрасли промышленности и экономики

История науки и техники ведет отсчет развития электроэнергетики с 1891 г., когда состоялось испытание трехфазной системы электропередачи на международной электротехнической выставке в г. Франкфурте-на-Майне .

На гидроэлектростанции в Лауфене электрическая энергия вырабатывалась гидроагрегатом, состоящем из турбины, конической зубчатой передачи и трехфазного синхронного генератора (мощность 230 кВ А, частота вращения 150 об/мин, напряжение 95 В, соединение обмоток звездой). В Лауфене и Франкфурте находилось по три трансформатора, погруженных в баки, наполненные маслом.

Трехпроводная линия была выполнена на деревянных опорах со средним пролетом около 60 м. Медный провод диаметром 4 мм крепился на штыревых фарфоро-масляных изоляторах. Интересной деталью линии являлась установка плавких предохранителей со стороны высокого напряжения: в начале линии в разрыв каждого провода был включен участок длиной 2,5 м, состоявший из двух медных проволок диаметром 0,15 мм каждая. Для отключения линии во Франкфурте посредством простого приспособления устраивалось трехфазнос короткое замыкание, плавкие вставки перегорали, турбина начинала развивать большую скорость, и машинист, заметив это, останавливал ее.

На выставочной площадке во Франкфурте был установлен понижающий трансформатор, от которого при напряжении 65 В питались 1000 ламп накаливания, расположенных на огромном щите. Здесь же был установлен трехфазный асинхронный двигатель ДоливоДобровольского, приводивший в действие гидравлический насос мощностью около 100 л. с., питавший небольшой искусственный водопад. Одновременно с этим мощным двигателем М.О. Доливо-Добровольский экспонировал асинхронный трехфазный двигатель мощностью около 100 Вт с вентилятором на его валу и двигатель мощностью 1,5 кВт с сидящим на его валу генератором постоянного тока.

Испытания электропередачи, которые проводились Международной комиссией, дали следующие результаты: минимальный КПД электропередачи (отношение мощности на вторичных зажимах трансформатора во Франкфурте к мощности на валу турбины в Лауфене) - 68,5 %, максимальный - 75,2 % при линейном напряжении около 15 кВ, а при напряжении 25,1 кВ максимальный КПД составил 78,9 %.

Результаты испытаний электропередачи Лауфен-Франкфурт не только продемонстрировали возможности передачи энергии на большие расстояния в виде электрической энергии, но и поставили точку в давнем споре сторонников постоянного либо переменного тока в пользу переменного тока.

Создание трехфазной системы - важнейший этап в развитии электроэнергетики и электрификации. После закрытия Франкфуртской выставки электростанция в Лауфене перешла в собственность г. Хейльборна, расположенного в 12 км от Лауфена, и была пущена в эксплуатацию в начале 1892 г. Электроэнергия использовалась для питания всей городской осветительной сети, а также ряда небольших заводов и мастерских. Понижающие трансформаторы устанавливались непосредственно у потребителей.

В том же 1892 г. была сдана в эксплуатацию линия Бюлах- Эрликон (Швейцария). Электроэнергия, вырабатываемая гидроэлектростанцией с гремя трехфазными генераторами мощностью 150 кВт каждый, построенная у водопада в г. Бюлахе, передавалась на расстояние 23 км для электроснабжения завода.

Вслед за этими первыми установками в короткое время были построены ряд электростанций; наибольшее их число находилось в Германии.

В США (в Калифорнии) первая трехфазная установка была сооружена в конце 1893 г. Темпы внедрения трехфазной системы в Америке вначале были заметно ниже, чем в Европе, из-за настойчивых попыток одной из крупнейших американских фирм - компании «Всстин- гауз» - развернуть работы по сооружению электростанций и электрических сетей но системе Теслы, т. е. двухфазных.

Для переходного периода в любой области техники характерны попытки комбинирования устаревающих и новых технических решений. Так, в течение почти двух десятилетий делались попытки «примирить» трехфазные системы с другими системами. В эти годы существовали электростанции, на которых одновременно работали генераторы постоянного, переменного однофазного, двухфазного и трехфазного тока или любая их комбинация. Напряжения и частоты были различными, потребители питались по раздельным линиям. Попытки спасти устаревающие системы, а вместе с ними и освоенное заводами электрооборудование, приводили к созданию комбинированных систем.

Но уже начиная с 1901-1905 гг. в основном сооружаются трехфазные электростанции, которые вначале преимущественно были станциями фабрично-заводского типа. Трехфазная техника позволяла строить крупные электростанции иа месте добычи топлива или па подходящей реке, а вырабатываемую энергию транспортировать по линиям электропередачи в промышленные районы и города. Такие электростанции стали называть районными.

Первые районные электростанции были построены во второй половине 90-х гг. XIX в., а в следующем столетии они составили основу развития электроэнергетики. Первой районной электростанцией считают Ниагарскую ГЭС. Строительство таких электростанций приобрело широкий размах с начала XX в. Этому способствовал рост потребления электроэнергии, связанный с внедрением в промышленность электропривода, развитием электрического транспорта и электрического освещения городов. Электрические станции становились крупными промышленными предприятиями, сети разных станций объединялись, создавались первые энергетические системы. Под энергетической системой стали понимать совокупность электростанций, линий электропередачи, подстанций и тепловых сетей, связанных общностью режима и непрерывностью процесса производства и распределения электрической и тепловой энергии.

Потребность объединять работу нескольких электростанций в общую сеть стала проявляться уже в 90-х гг. XIX в. Она обусловлена тем, что при совместной работе уменьшается необходимый резерв на каждой станции в отдельности, появляется возможность ремонта оборудования без отключения основных потребителей, создаются условия для выравнивания графика нагрузки базисных станций в целях более эффективного использования энергетических ресурсов. Первое известное объединение двух трехфазных электростанций было осуществлено в 1892 г. в Швейцарии.

Русские электротехники сумели быстро оценить достоинства трехфазной системы. Уже в январе 1892 г. на 4-й Петербургской электротехнической выставке демонстрировались две трехфазные машины системы Доливо-Добровольского мощностью по 15 кВт. В России первым предприятием с трехфазным электроснабжением был Новороссийский элеватор. Он представлял собой огромное сооружение, и задача распределения энергии по его этажам и различным зданиям могла быть решена наилучшим образом только с помощью электричества. Элеватор был электрифицирован в 1893 г. Все машины по разработанным за границей проектам изготовлялись в собственных мастерских элеватора. На электростанции, построенной рядом с элеватором, были установлены четыре синхронных генератора мощностью 300 кВт каждый. В то время это была самая мощная в мире трехфазная электростанция. В помещениях элеватора работали трехфазные двигатели мощностью 3,5-15,0 кВт, которые приводили в действие различные машины и механизмы. Часть энергии использовалась для освещения.

Первая в России электропередача значительной протяженности была сооружена на Павловском прииске Ленского золотопромышленного района в Сибири. На электростанции, построенной в 1896 г. на р. Ныгра, были установлены трехфазный генератор (98 кВт, 600 об/мин, 140 В) и трансформатор соответствующей мощности, повышающий напряжение до 10 кВ. Электроэнергия передавалась на прииск, удаленный от станции на расстояние 21 км. На прииске для привода водоотливных устройств использовались трехфазные асинхронные двигатели мощностью 6,5-25,0 л. с. (напряжение 260 В). С 1897 г. началась электрификация крупных городов: Москвы, Петербурга, Самары, Киева, Риги, Харькова и др.

Интересно отметить, что во время бурного развития трехфазных электропередач высокого напряжения (до 150 кВ) М.О. Доливо- Добровольский на основе технико-экономических расчетов пришел к выводу о том, что при передаче энергии на несколько сотен километров при напряжении свыше 200 кВ целесообразно генерирование и распределение энергии осуществлять переменным током, а передачу - постоянным током высокого напряжения. Линия постоянного тока в начале и в конце должна подсоединяться к преобразовательным подстанциям, на которых устанавливаются ртутные выпрямители. К такому выводу он пришел, даже не зная о такой проблеме для мощных линий передач переменного тока, как устойчивость.

В наши дни его предсказание оправдалось, и во многих странах успешно действуют линии электропередачи постоянного тока сверхвысокого напряжения (подробнее см. в 11.6). На рис. 1.1 и 1.2 показана динамика роста рабочего напряжения воздушных линий передач переменного и постоянного тока.

Рис. 1.1.

(рекордных) классов напряжения

Рис. 1.2.

(рекордных) кчассов напряжения

Дальнейшее развитие электроэнергетики в нашей стране проходило в несколько этапов:

  • соединение электростанций на параллельную работу и образование первых энергосистем;
  • образование территориальных объединений энергосистем (ОЭС);
  • создание Единой энергетической системы (ЕЭС);
  • функционирование ЕЭС России после образования независимых государств на территории бывшего СССР.

Основа создания энергетических систем в нашей стране была заложена Государственным планом электрификации России (ГОЭЛРО), утвержденным в 1920 г. Этот план предусматривал централизацию электроснабжения путем строительства крупных электростанций и электрических сетей с последовательным объединением их в энергетические системы. Планом ГОЭЛРО предусматривалось также всемерное развитие отечественной электротехнической промышленности, освобождение ее от засилья иностранного капитала, удельный вес которого составлял в ней в начале 20-х гг. 70 %. Для решения всех вопросов электротехники и подготовки высококвалифицированных специалистов в октябре 1921 г. был создан Государственный экспериментальный электротехнический институт, переименованный впоследствии во Всесоюзный электротехнический институт (ВЭИ).

Под руководством ведущих членов комиссии ГОЭЛРО (руководитель Г.М. Кржижановский) были спроектированы и построены ряд электростанций и линий электропередач: Шатурская ГРЭС (мощность 48 МВт, ввод в эксплуатацию в 1925 г.), Волховская ГЭС (66 МВт, 1926 г.), Нижнесвирская ГЭС (90 МВт, 1933 г.), Днепровская ГЭС (580 МВт, 1932 г.). Днепровская ГЭС была в то время самой крупной в Европе.

Первые энергосистемы - Московская и Петроградская - были созданы в 1921 г. В 1922 г. в Московской энергосистеме вошла в строй первая линия электропередачи напряжением 110 кВ Каширская ГРЭС - Москва длиной 120 км, а в 1933 г. была пущена ЛЭП напряжением 220 кВ Нижнесвирская ГЭС - Ленинград. (Первая линия 220 кВ во Франции была построена всего на полгода раньше). Были образованы новые энергосистемы: Донбасская (1926 г.), Ивановская (1928 г.), Ростовская (1929 г.) и др.

За 15-летний срок план ГОЭЛРО был значительно перевыполнен. Установленная мощность электростанций страны в 1935 г. составила 6,9 млн кВт, годовая выработка электроэнергии достигла 26,8 млрд кВт-ч. По производству электроэнергии Советский Союз занял второе место в Европе и третье в мире.

Процесс объединения энергосистем начался еще в первой половине 30-х гг. с создания сетей 110 кВ энергосистем в районах Центра и Донбасса. В 1940 г. для руководства параллельной работой Верхневолжских энергосистем (Горьковской, Ивановской и Ярославской) была создана объединенная диспетчерская служба. В связи с намечавшимся объединением энергосистем Юга в 1938 г. было создано Бюро Южной энергосистемы, которое затем было преобразовано в Оперативнодиспетчерское управление Юга; в 1940 г. была введена в эксплуатацию первая межсистемная связь напряжением 220 кВ Днепр-Донбасс.

Мощность всех электростанций страны в 1940 г. достигла 11,2 млн кВт, выработка электроэнергии составила 48,3 млрд кВт-ч.

Интенсивное плановое развитие электроэнергетики было прервано Великой Отечественной войной. Перебазирование промышленности западных районов на Урал и в восточные районы страны потребовало форсированного развития энергетики Урала, Казахстана, Центральной Сибири, Средней Азии, Поволжья, Закавказья и Дальнего Востока. Особенно большое развитие получила электроэнергетика Урала, где выработка электроэнергии с 1940 по 1945 гг. увеличилась в 2,5 раза.

В ходе войны электроэнергетике был нанесен громадный ущерб: взорваны, сожжены или частично разрушены 61 крупная электростанция и большое число мелких общей мощностью 5 млн кВт, т. е. почти половина установленных к тому времени мощностей. Разрушено 10 тыс. км магистральных линий электропередачи высокого напряжения, большое количество подстанций.

Восстановление энергетического хозяйства началось уже с конца 1941 г. В 1942 г. восстановительные работы велись в центральных районах европейской части СССР, а к 1945 г. эти работы распространились на всю освобожденную территорию страны.

В 1946 г. суммарная мощность электростанций СССР достигла довоенного уровня: в 1947 г. страна по производству электроэнергии вышла на первое место в Европе и на второе в мире.

В 1954 г. в г. Обнинске была введена в эксплуатацию первая в мире атомная электростанция мощностью 5 МВт.

В 1955 г. суммарная мощность электростанций достигла 37,2 млн кВт, выработка электроэнергии составила 170,2 млрд кВт-ч.

Переход к следующему, качественно новому этапу развития электроэнергетики был связан с вводом в эксплуатацию мощных Волжских ГЭС и дальних линий электропередачи 400-500 кВ. В 1956 г. была введена в работу первая электропередача 400 кВ Куйбышев (ныне Самара) - Москва.

ЛЭП 400 кВ Куйбышев-Москва объединила энергосистемы Средней Волги, линия Куйбышев-Урал - с энергосистемами Прсдура- лья и Урала. Этим было положено начало объединению энергосистем различных регионов и созданию ЕЭС европейской части СССР.

В течение 60-х гг. завершилось формирование ЕЭС европейской части СССР, и в 1970 г. начался следующий этап развития электроэнергетики страны - формирование ЕЭС СССР в составе: ОЭС Центра, Урала, Средней Волги, Северо-Запада, Юга, Северного Кавказа и Закавказья, включавших 63 энергосистемы; три территориальные ОЭС - Казахстана, Сибири и Средней Азии работали раздельно; ОЭС Дальнего Востока находилась в стадии формирования.

В 1972 г. в состав ЕЭС СССР вошла ОЭС Казахстана. В 1973 г. энергосистема Болгарии присоединена на параллельную работу с ЕЭС СССР по межгосударственной связи 400 кВ Молдавская ГРЭС- Вулканешты-Добруджа.

В 1978 г. с завершением строительства транзитной связи 500 кВ Сибирь-Казахстан-Урал присоединилась на параллельную работу ОЭС Сибири. В том же году было закончено строительство межгосударственной связи 750 кВ Западная Украина - Альбертирша (Венгрия), и с 1979 г. началась параллельная работа ЕЭС СССР и ОЭС стран-членов Совета экономической взаимопомощи (СЭВ).

От сетей ЕЭС СССР осуществлялся экспорт электроэнергии в МНР, Финляндию, Турцию и Афганистан; через преобразовательную подстанцию постоянного тока в районе Выборга ЕЭС СССР соединилась с энергообъединением Скандинавских стран NORDEL.

Динамика структуры генерирующих мощностей в 70-х и 80-х гг. характеризуется: нарастающим вводом мощностей на АЭС в западной части страны и дальнейшим вводом мощностей на высокоэффективных ГЭС преимущественно в восточной части страны; началом работ по первому этапу создания Экибасгузского энергетического комплекса; общим ростом концентрации генерирующих мощностей и увеличением единичной мощности агрегатов. Мощность наиболее крупных электростанций России в настоящее время составляет: ТЭС - 4800 МВт (Сургутская ГРЭС-2), АЭС - 4000 МВт (Балаковская, Ленинградская, Курская), ГЭС - 6400 МВт (Саяно-Шушенская).

Технический прогресс в развитии системообразующих сетей характеризовался последовательным переходом к более высоким ступеням напряжения. Освоение напряжения 750 кВ началось с ввода в эксплуатацию в 1967 г. опытно-промышленной электропередачи Конаковская ГРЭС - Москва. В течение 1971-1975 гг. в ОЭС Юга была сооружена широтная магистраль 750 кВ Донбасс - Днепр - Винница - Западная Украина. В 1975 г. была сооружена межсистсмная связь 750 кВ Ленинград-Конаково, позволившая передать в ОЭС Центра избыточную мощность ОЭС Северо-Запада. Для создания мощных связей с восточной частью ЕЭС сооружалась магистральная линия электропередачи 1150 кВ Сибирь-Казахсган-Урал. Было начато также строительство электропередачи постоянного тока напряжением 1500 кВ Экиба- стуз-Цснтр.

В табл. 1.1 приведены данные по установленной мощности электростанций и протяженности электрических сетей 220-1150 кВ ЕЭС СССР за период 1960-1991 гг.

В послевоенные годы электрификация стала основой научно- технического прогресса страны. На ее базе происходило непрерывное совершенствование технологий в промышленности, транспорте, связи, сельском хозяйстве и строительстве, осуществлялась механизация и автоматизация производственных процессов. Рост производства электроэнергии в эти годы опережал рост произведенного национального дохода в 1,6 раза.

Таблица 1.1

Рост установленной мощности электростанций и протяженности электрических сетей 220-1150 кВ ЕЭС СССР

Показатель

Установленная мощность

электростанций, млн кВт

Высшее напряжение, кВ

Протяженность электри-

ческих сетей, тыс. км:

Управление электроэнергетикой страны до 1991 г. происходило в условиях монополии государственной собственности на все предприятия отрасли. Все электростанции и ЛЭП принадлежали государству и строились за счет средств государственного бюджета. Строительство объектов электроэнергетики осуществлялось по критерию минимальных народно-хозяйственных затрат. Такой подход к развитию отрасли при полном государственном регулировании минимизировал нспроизводительные затраты. Выбор места размещения новых электростанций и их мощность определялись наличием ТЭР в данном районе и экономической целесообразностью их использования.

Каждая крупная электростанция строилась так, чтобы обеспечивать электроэнергией территорию, охватывающую несколько смежных областей или республик. Для таких электростанций использовался термин «государственная районная электрическая станция» - ГРЭС, т. е. электростанция, построенная на государственные средства, принадлежащая государству и обеспечивающая электроэнергией большой район радиусом до 500-600 км и более. Как правило, эти крупные ГРЭС конденсационного типа или АЭС рассчитаны на производство большого количества электроэнергии. Такие электростанции явились основными производителями электроэнергии в составе ЕЭС СССР.

Тепловая энергия производилась на ГРЭС в небольшом количестве для собственных нужд электростанции и для близлежащих населенных пунктов.

Теплоэлектроцентрали (ТЭЦ), вырабатывающие электрическую и тепловую энергию по комбинированному циклу, размещались в местах сосредоточения больших тепловых нагрузок, например крупных промышленных предприятий или городских районов. В каждом крупном городе была построена одна или несколько ТЭЦ. Они обеспечивали население и промышленность, в первую очередь, тепловой энергией, а попутно и дешевой электроэнергией, вырабатываемой на тепловой нагрузке.

Эффективность работы электроэнергетики обеспечивалась централизованным управлением режимами работы электростанций и электрических сетей, планированием и контролем их техникоэкономических показателей. Директивная система позволяла легко реализовать перераспределение экономического эффекта от деятельности различных предприятий электроэнергетики, исходя из интересов народного хозяйства страны, а экономические противоречия между производителями и потребителями разрешались самим же государством. Непротиворечивость интересов развития и функционирования отдельных предприятий электроэнергетики в этот период обеспечивалась единой нормативно-правовой основой, которая формировалась центральными органами государственного управления (Госпланом СССР и Минэнерго СССР) .

Централизованное распределение капитальных вложений в развитие и функционирование объектов электроэнергетики не было непосредственно связано с результатами хозяйственной деятельности отдельных предприятий, а непроизводительные расходы убыточных предприятий покрывались перераспределением доходов внутри самой отрасли за счет прибыльных предприятий. Директивное управление было направлено в основном на выполнение плановых технико-экономических показателей и ограничивало инициативу предприятий по улучшению своей деятельности, поскольку экономический эффект от успешной деятельности мог быть просто перераспределен в пользу другого, убыточного предприятия. Эти издержки централизации отчётливо проявились при переходе страны к рыночной экономике и стали побудительной причиной радикальной реформы электроэнергетической отрасли.

Электроэнергетика, тепловая и атомная». Вначале мы вспомним, что такое электроэнергетика и какую роль она играет в жизнеобеспечении страны. Затем рассмотрим производство электроэнергии в России. Познакомимся с тепловыми и атомными электростанциями, и обсудим их сходства и отличия, достоинства и недостатки.

Тема: Общая характеристика хозяйства России

Урок: Электроэнергетика. Тепловая и атомная энергетика

Электроэнергетика - это часть топливно-энергетического комплекса, которая занимается производством электрической энергии и передачей её потребителю.

Значение электроэнергетики очень велико в хозяйстве страны и её людей.От электроэнергетики зависит развитие производства и обеспечение жизнедеятельности населения. Она воздействует на территориальное размещение промышлености. Россия занимает четвёртое место в мире по производству электроэнергии, уступая при этом США, Японии, Китаю.

Рис. 1. Страны-лидеры по производству электроэнергии

В России электроэнергия производится на электростанциях четырёх типов: тепловых, гидравлических, атомных и на электростанциях, использующих альтернативных источников энергии.

Рис. 2. Производство электроэнергии в России на электростанциях различных типов

Наибольшее количество электроэнергии производится на тепловых электростанциях. Они являются самым распространённым видом электростанций в России. Тепловые электростанции - это самые старые электростанции в России.

Рис. 3. Тепловые электростанции

Для своей работы электростанции используют: уголь, природный газ, мазут, сланцы, торф. При этом тепловая энергия преобразуется в электрическую. У тепловых электростанций большое количество недостатков: тепловые электростанции для своей работы требуют огромного количества трудовых ресурсов, которые необходимы для обслуживания этих станций; ресурсы, которыми пользуются тепловые электростанции, исчерпаемы и невозобновимы; тепловые электростанции очень плохо регулируются, для их остановки и запуска требуется очень много времени; кроме того, при сгорании топлива выделяется множество вредных веществ, которые уходят в атмосферу, поэтому электростанции являются главным загрязнителем атмосферного воздуха. Но у тепловых электростанций есть большие достоинства, которые делают их самыми распространёнными в России и в мире. Они очень легко и быстро сооружаются, вырабатывают электроэнергию круглогодично без сезонных колебаний в количестве вырабатываемой электроэнергии, кроме того, они могут быть построены как у источников сырья, так и около потребителя.

Тепловые электростанции бывают двух видов: конденсационные и теплоэлектроцентрали . Конденсационные самые популярные электростанции.Если они обслуживают большие районы и вырабатывают большое количество электроэнергии, то их называют государственными районными электростанциями или ГРЭС. В европейской части России ГРЭС используют чаще мазут и уголь.

Рис. 4. Рефтинская ГРЭС

Теплоэлектроцентрали - это тип станций, который вырабатывает не только электрическую энергию, но и производит тепло, которое направляется к потребителю.

Рис. 5. Теплоэлектроцентраль (ТЭЦ)

Особенностью географии теплоэнергетики является то, что они располагаются повсеместно. Самые крупные являются Сургутская ГРЭС, Костромская ГРЭС и Рефтинская ГРЭС.

Рис. 6. Тепловые электростанции России ()

Атомные электростанции - это второй тип электростанций, которые производят электроэнергию на территории России. Первая АЭС была построена в 1954 году в городе Обнинске.

Рис. 7. Атомная электростанция (АЭС)

В настоящее время АЭС производит 15% электроэнергии в России. В сравнении с ТЭС, АЭС имеют ряд преимуществ: не требуют постоянных и больших поставок топлива, ведь один килограмм урана заменяет 2.500 тонн угля, данный тип электростанций удобно располагать в электродефицитных местах и удалённых районах, а при безаварийной работе атомные электростанции оказывают незначительное воздействие на окружающую среду. Способ эксплуатации АЭС в Чернобыле и станции Фукусима, показал, что данный тип электростанций имеет ряд недостатков, прежде всего - это тяжелые последствия, которые происходят после аварий на АЭС. Кроме того, до сих пор не разработаны технологии утилизации отходов, которые образуются при работе АЭС. Станции плохо регулируются: для их остановки и включения требуется несколько недель.

Рис. 8. Действующие электростанции России ( ) В настоящий момент в России действуют 10 АЭС. Основная часть электростанций находится в Европейской части страны - это Нововоронежская АЭС, Ленинградская АЭС, на Урале располагается Белоярская АЭС, на севере Европейской части располагается Кольская АЭС, а на Чукотке Билибинская АЭС.

  1. В.П. Дронов, В.Я. Ром. География России: население и хозяйство. 9 класс.
  2. В.П. Дронов, И.И. Баринова, В.Я. Ром, А.А. Лоюжанидзе. География России: хозяйство и географические районы. 9 класс.
  1. Как это сделано, как это работает (). Как работает тепловая электростанция
  2. РИА новости (). Как устроена АЭС
  3. Википедия (). Схема работы АЭС
  4. РИА новости (). Последствия катастрофы на Чернобыльской АЭС
  5. Единая коллекция цифровых образовательных ресурсов (). Топливно-энергетический комплекс: Энергетическая промышленность

Одной из значимых экономических отраслей является электроэнергетика России . По данным 2013 года было использовано 699 млн. тонн первичных ресурсов энергии; из них 53,2% составило потребление природного газа, нефти – 21,9%, угля – 13,4%, гидроэнергии – 5,9%, ядерной энергии – 5,6%.

Так сложилось, что значительной частью любого производства является топливная энергетика. Начало прошлого века дало старт развитию энергетики в СССР.

В 20-30-е годы ХХ столетия началось грандиозное мероприятие по строительству ТЭЦ и ГЭС, согласно решению государственной комиссии по электрификации России (ГОЭЛРО).

Научные разработки в области атомной энергетики, проводимые в 50-е годы прошлого века, привели к созданию электростанций на основе атомной энергии. Последующий период знаменовался освоением Сибири и ее потенциальных гидровозможностей, освоением залежей местных полезных ископаемых.

РФ – государство богатое на залежи энергетических ископаемых – состоит в десятке самых обеспеченных энергетическими ресурсами стран. На выставочных экспозициях показаны последние достижения в этой сфере.

Общие сведения об электроэнергетике в России и не только

Самой крупной электростанцией Евразийского континента является Сургутская ГРЭС-2. На ее обеспечении находится один из самых важных промыслов Западносибирского региона – нефтегазовый.

Электроэнергетика России является одной из основ современной жизни. Показатель выработки электроэнергии по данным на 2005 год находился на одном уровне с Германией и Данией – странами-импортерами электричества.

В 90-х годах ХХ века произошел значительный спад потребления электроэнергии, но с 1998 года этот показатель начал свой рост и к 2007 году достиг 997,3 млрд. кВт/ч.

Наиболее энергопотребляющей отраслью является промышленность, на долю которой приходится 36%, 15% – доля потребления электричества жилым сектором. Потери электроэнергии в сетях могут составлять максимально 11,5%.

Распределение потребления электроэнергии регионально отличается между собой. Густонаселенные регионы страны поднимают показатель потребления энергии в жилом секторе на максимальный уровень в сравнении с другими районами.

Процесс реструктуризации ЕЭС в России стартовал в 2003 году. Основное внимание было уделено окончательному формированию появившихся на рынке новичков, внедрению в жизнь новых правил работы энергетического рынка, было решено ускорить процесс либерализации.

С 2008 года «Холдинг МРСК» становится владельцем акций компаний, которые занимаются распределением энергетических ресурсов по отраслям и регионам.

Развитие ядерной энергетики на территории РФ

В России размещены все технологии, участвующие в производстве ядерной электроэнергии, начиная с процесса добычи урановой руды и заканчивая получением энергии.

Балаковская АЭС является одной из самых крупных атомных электростанций.

Начало 80-х годов ХХ века дало старт в развитии и возведении новых атомных станций – Горьковской и Воронежской, но уже к 90-м годам оба проекта были приостановлены.

Гидроэнергетика РФ

Братская ГЭС, которая является самой крупной электростанцией в своем классе, содержит на своем балансе производство алюминия, снабжая его электроэнергией по низкой цене, а также обеспечивает спрос на энергетический ресурс в Сибирском регионе.

Прогресс в развитии гидроэлектростанций связан с освоением энергетических возможностей Сибири и завершением размещения ГЭС в данном районе.

Наряду с этим действуют программы по освоению других регионов государства, проводятся работы по строительству ГЭС на Северном Кавказе. В перспективе рассматривается Кубань и Сочи, Северная Осетия и Дагестан.

Под понятием топливной энергетики понимают добычу, переработку и реализацию сырья и готового продукта в виде угля, газа, нефти, торфа, урана.

Развитие энергетики в России

Ведущей задачей проводимых реформ в электроэнергетике считается становление конкуренции в потенциально конкурентных сферах работы – генерация и сбыт электричества в тех районах, где это технологически и экономически реализуемо, что, в свою очередь, сделает обстоятельства больше действенными в сфере генерации, передачи и реализации электричества.

Правительством Федерации приняты Главные направленности реформирования электроэнергетики, предусматривающие воплощение реформы в ветви в направлении 3-х взаимосогласованных рубежей.

В направлении первого шага не ведется абсолютная либерализация рынка электричества, что позволит избежать одномоментного совмещения 2-ух трудных процессов – реструктуризации компаний и либерализации рынка.

Запускается конкурентоспособный оптовый рынок в размере продаж, до 15% сделанных станциями электричества, что дозволит уже на первом рубеже проработать модель конкурентоспособного оптового рынка.

В рамках 2 шага запускается и развивается конкурентоспособный оптовый и розничный рынки электричества. По мере становления рынка и инфраструктуры станет происходить расширение пределов конкурентных рынков с повышением числа его членов.

Почвой создаваемого конкурентоспособного рынка будет хитросплетение санкционированной (биржевой) торговли электричеством с системой взаимных соглашений, представляющее участникам рынка право на самостоятельное налаживание связей.

Присутствие действенной системы регулировки и контроля, сделанной в ходе первого шага, позволит понизить опасности переходного периода к либерализации рынка.

В рамках третьего шага ожидается создание значимых вложений в капитал компаний электроэнергетики, закончится оформление инфраструктуры и переход электроэнергетики в положение стойкого становления.

Реформа ветви сформирует обстоятельства для конкуренции электроэнергетических фирм на внутреннем и наружных рынках, что дозволит расширить экспортный потенциал РФ.

Становление экспорта электричества считается стратегической задачей госзначимости, потому что в отличие от экспорта углеводородного сырья дает продвижение на иностранные рынки наукоемкой сверхтехнологичной готовой продукции.

В связи с этим правительство станет оказывать функциональную помощь расширению экспорта электричества, охватывая упрощение процедуры таможенного контроля, гармонизацию и синхронизацию функционирования отечественного оптового рынка электричества (мощности) с общепризнанными мерками и правилами, принятыми в Европейском Объединении (UCTE).

С учетом либерализации и демонополизации оптового рынка электричества (мощности) и основ реформирования электроэнергетического раздела РФ контрольная и регулирующая роль страны в сфере экспорта электричества станет заключаться в обеспечении недискриминационного доступа изготовителей к экспортным поставкам, организации и претворении в жизнь антидемпинговых и антимонопольных процедур в рамках законодательства Русской Федерации.

Основываясь на принципах финансовой необходимости при формировании управленческой стратегии в области электроэнергетики, а еще на бесспорном выполнении основ энергетической защищенности РФ, правительство станет поощрять осмысленное соотношение объемов экспорта/импорта электричества.

Ввоз на первом рубеже реформирования электроэнергетики станет являться оправданным в тех случаях, когда он станет содействовать недопущению скачкообразного подъема тарифов на внутреннем рынке РФ, а еще преодолению недостатка в отдельных частях оптового рынка на этапе реконструкции и постройки свежих генерирующих мощностей. А значит, на выставке «Электро» вам стоит посмотреть новинки сегмента.

Также на выставке можно больше узнать о тенденциях развития электроэнергетики в России.

Читайте другие наши статьи:

Введение
1. Историко-географические особенности развития электроэнергетики в России
2. Территориальное размещение производств электроэнергетики в Российской Федерации
3. Единая энергетическая система страны
4. Проблемы и перспективы развития электроэнергетики
Заключение
Список использованных источников

Введение

Электроэнергетика - отрасль энергетики, включающая в себя производство, передачу и сбыт электроэнергии. Электроэнергетика является наиболее важной отраслью энергетики, что объясняется такими преимуществами электроэнергии перед энергией других видов, как относительная лёгкость передачи на большие расстояния, распределения между потребителями, а также преобразования в другие виды энергии (механическую, тепловую, химическую, световую и др.). Отличительной чертой электрической энергии является практическая одновременность её генерирования и потребления, так как электрический ток распространяется по сетям со скоростью, близкой к скорости света.

Электроэнергетика наряду с другими отраслями народного хозяйства рассматривается как часть единой народно – хозяйственной экономической системы. В настоящее время без электрической энергии наша жизнь немыслима. Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос. Без электроэнергии невозможно действие современных средств связи и развитие кибернетики, вычислительной и космической техники. Представить без электроэнергии нашу жизнь невозможно.

Основным потребителем электроэнергии остается промышленность, хотя ее удельный вес в общем полезном потреблении электроэнергии значительно снижается. Электрическая энергия в промышленности применяется для приведения в действие различных механизмов и непосредственно в технологических процессах.

Например, в сельском хозяйстве электроэнергия применяется для обогрева теплиц и помещений для скота, освещения, автоматизации ручного труда на фермах.

Огромную роль электроэнергия играет в транспортном комплексе. Большое количество электроэнергии потребляет электрифицированный железнодорожный транспорт, что позволяет повышать пропускную способность дорог за счет увеличения скорости движения поездов, снижать себестоимость перевозок, повышать экономию топлива.

Электроэнергия в быту является основной частью обеспечения комфортабельной жизни людей. Многие бытовые приборы (холодильники, телевизоры, стиральные машины, утюги и другие) были созданы благодаря развитию электротехнической промышленности.

Поэтому, актуальность выбранной мною темы является очевидной, также как очевидна важность электроэнергетики в хозяйственной жизни нашей страны.

Итак, задачами и целью данной работы являются:

– рассмотреть структуру электроэнергетики;
– изучить её размещение;
– рассмотреть современный уровень развития электроэнергетики;
– охарактеризовать особенности развития и размещения электроэнергетики в России.

1. Историко-географические особенности развития электроэнергетики в России.

Развитие электроэнергетики России связано с планом ГОЭЛРО (1920 г.) сроком на 15 лет, который предусматривал строительство 10 ГЭС общей мощностью 640 тыс. кВт. План был выполнен с опережением: к концу 1935 г. было построено 40 районных электростанций. Таким образом, план ГОЭЛРО создал базу индустриализации России, и она вышла на второе место по производству электроэнергии в мире.

В начале XX века в структуре потребления энергоресурсов абсолютно преобладающее место занимал уголь. Например, в развитых странах к 1950г. на долю угля приходилось 74%, а нефти – 17% в общем объеме энергопотребления. При этом основная доля энергоресурсов использовалась внутри стран, где они добывались.

Среднегодовые темпы роста энергопотребления в мире в первой половине XX в. составляли 2-3%, а в 1950-1975гг. – уже 5%.

Чтобы покрыть прирост энергопотребления во второй половине XX в. мировая структура потребления энергоресурсов претерпевает большие изменения. В 50-60-х гг. на смену углю все больше приходят нефть и газ. В период с 1952 по 1972гг. нефть была дешевой. Цена на нее на мировом рынке доходила до 14 долл./т. Во второй половине 70-х также начинается освоение крупных месторождений природного газа и его потребление постепенно наращивается, вытесняя уголь.

До начала 70-х годов рост потребления энергоресурсов был в основном экстенсивным. В развитых странах его темп фактически определялся темпом роста промышленного производства. Между тем, освоенные месторождения начинают истощаться, и начинает расти импорт энергоресурсов, в первую очередь – нефти.

В 1973г. разразился энергетический кризис. Мировая цена на нефть подскочила до 250-300 долл./т. Одной из причин кризиса стало сокращение ее добычи в легкодоступных местах и перемещение в районы с экстремальными природными условиями и на континентальный шельф. Другой причиной стало стремление основных стран – экспортеров нефти (членов ОПЕК), которыми в основном являются развивающиеся страны, более эффективно использовать свои преимущества владельцев основной части мировых запасов этого ценного сырья.

В этот период ведущие страны мира были вынуждены пересмотреть свои концепции развития энергетики. В результате, прогнозы роста энергопотребления стали более умеренными. Значительное место в программах развития энергетики стало отводиться энергосбережению. Если до энергетического кризиса 70-х энергопотребление в мире прогнозировалось к 2000 г. на уровне 20-25 млрд. т условного топлива, то после него прогнозы были скорректированы в сторону заметного уменьшения до 12,4 млрд. т условного топлива.

Промышленно развитые страны принимают серьезнейшие меры по обеспечению экономии потребления первичных энергоресурсов. Энергосбережение все больше занимает одно из центральных мест в их национальных экономических концепциях. Происходит перестройка отраслевой структуры национальных экономик. Преимущество отдается мало энергоемким отраслям и технологиям. Происходит свертывание энергоемких производств. Активно развиваются энергосберегающие технологии, в первую очередь, в энергоемких отраслях: металлургии, металлообрабатывающей промышленности, транспорте. Реализуются масштабные научно-технические программы по поиску и разработке альтернативных энергетических технологий. В период с начала 70х до конца 80х гг. энергоемкость ВВП в США снизилась на 40%, в Японии – на 30%.

В этот же период идет бурное развитие атомной энергетики. В 70-е годы и за первую половину 80-х годов в мире было пущено в эксплуатацию около 65% ныне действующих АЭС.

В этот период в политический и экономический обиход вводится понятие энергетической безопасности государства. Энергетические стратегии развитых стран нацеливаются не только на сокращение потребления конкретных энергоносителей (угля или нефти), но и в целом на сокращение потребления любых энергоресурсов и диверсификацию их источников.

В результате всех этих мер в развитых странах заметно снизился среднегодовой темп прироста потребления первичных энергоресурсов: с 1,8% в 80-е гг. до 1,45% в 1991-2000 гг. По прогнозу до 2015 г. он не превысит 1,25%.

Во второй половине 80-х появился еще один фактор, оказывающий сегодня все большее влияние на структуру и тенденции развития ТЭК. Ученые и политики всего мира активно заговорили о последствиях воздействия на природу техногенной деятельности человека, в частности, влиянии на окружающую среду объектов ТЭК. Ужесточение международных требований по охране окружающей среды с целью снижения парникового эффекта и выбросов в атмосферу (по решению конференции в Киото в 1997г.) должно привести к снижению потребления угля и нефти как наиболее влияющих на экологию энергоресурсов, а также стимулировать совершенствование существующих и создание новых энергетических технологий.

2. Территориальное размещение производств электроэнергетики в Российской Федерации.

Электроэнергетика сильнее, чем все другие отрасли промышленности, способствует развитию и территориальной оптимизации размещения производительных сил. Это выражается в следующем (по А.Т.Хрущёву):

1) вовлекаются в использование топливно-энергетические ресурсы, удаленные от потребителей;

2) возможен промежуточный отбор электроэнергии для снабжения ею районов, через которые проходят линии высоковольтных электропередач, что способствует росту уровня территориальной освоенности этих районов, повышению эффективности экономики и уровня комфортности проживания в них;

3) возникают дополнительные возможности для создания электроёмких и теплоёмких производств (в которых доля топливно-энергетических затрат в себестоимости готовой продукции очень велика); 4) электроэнергетика имеет большое районообразующее значение, именно она во многом определяет производственную специализацию районов.

Опыт развития отечественной электроэнергетики выработал следующие принципы размещения и функционирования предприятий этой отрасли промышленности:

1) концентрация производства электроэнергии на крупных районных электростанциях, использующих относительно дешёвое топливо и энергоресурсы;

2) комбинирование производства электроэнергии и тепла для теплофикации населенных пунктов, прежде всего городов;

3) широкое освоение гидроресурсов с учетом комплексного решения задач электроэнергетики, транспорта, водоснабжения, ирригации, рыбоводства;

4) необходимость развития атомной энергетики, особенно в районах с напряженным топливно-энергетическим балансом, при условии подчеркнутого и исключительного внимания к соблюдению правил эксплуатации АЭС, обеспечение безопасности и надежности их функционирования;

5) создание энергосистем, формирующих единую высоковольтную сеть страны.

Размещение предприятий электроэнергетики зависят от ряда факторов, основные из них – топливно-энергетические ресурсы и потребители. По степени обеспеченности топливно-энергетическими ресурсами районы России можно разделить на три группы: 1) наиболее высокая – Дальневосточный, Восточно-Сибирский, Западно-Сибирский; 2) относительно высокая – Северный, Северо-Кавказский; 3) низкая – Северо-Западный, Центральный, Центрально-Черноземный, Поволжский, Уральский.

Расположение топливно-энергетических ресурсов не совпадает с размещением населения, производством и потребителем электроэнергии. Подавляющая часть произведенной электроэнергии расходуется в европейской части России. По производству электроэнергии среди экономических районов к концу 1990-х гг. выделялись Центральный, а по потреблению – Уральский. В числе электродефицитных районов: Уральский, Северный, Центрально-Черноземный, Волго-Вятский.

Крупные электростанции играют значительную районообразующую роль. На их базе возникают энергоёмкие и теплоёмкие производства.

Электроэнергетика включает тепловые электростанции, атомные электростанции, гидроэлектростанции (включая гидроаккумулирующие и приливные), прочие электростанции (ветростанции, гелиостанции, геотермальные), электрические сети, тепловые сети, самостоятельные котельные.

Тепловые электростанции (ТЭС). Основной тип электростанций в России – тепловые, работающие на органическом топливе (уголь, газ, мазут, сланцы, торф). Основную роль играют мощные (более 2 млн кВт) государственные районные электростанции (ГРЭС), обеспечивающие потребности экономического района и работающие в энергосистемах. На размещение тепловых электростанций оказывают основное влияние топливный и потребительский факторы.

При выборе места для строительства ТЭС учитывают сравнительную эффективность транспортировки топлива и электроэнергии. Если затраты на перевозку топлива превышают издержки на передачу электроэнергии целесообразно размещать непосредственно у источников топлива, при более высокой эффективности транспортировки топлива электростанции размещают вблизи потребителей электроэнергии. Наиболее мощные ТЭС расположены, как правило, в местах добычи топлива (чем крупнее электростанция, тем дальше она может передавать энергию).

ГРЭС мощностью более 2 млн кВт расположены в следующих экономических районах: Центральном (Костромская, Рязанская, Конаковская); Уральская (Рефтинская, Троицкая, Ириклинская); Поволжском (Заинская); Восточно-Сибирском (Назаровская); Западно-Сибирском (Сургутские); Северо-Западном (Киришская).

К тепловым электростанциям относятся и теплоэлектроцентрали (ТЭЦ), обеспечивающие теплом предприятия и жилье, с одновременным производством электроэнергии. ТЭЦ размещаются в пунктах потребления пара и горячей воды, поскольку радиус передачи тепла невелик (10-12 км).

Положительные свойства ТЭС:

– относительно свободное размещение, связанное с широким распространением топливных ресурсов в России;
– способность вырабатывать электроэнергию без сезонных колебаний в отличие от ГЭС).

Отрицательные свойства ТЭС:

– используют невозобновимые топливные ресурсы;
– обладают низким коэффициентом полезного действия (КПД);
– оказывают неблагоприятное воздействие на окружающую среду;
– имеют большие затраты на добычу, перевозку, переработку и удаление отходов топлива.

Гидравлические электростанции (ГЭС). Они занимают второе место по количеству вырабатываемой электроэнергии. Гидроэлектростанции являются эффективным источником энергии, поскольку они используют возобновимые ресурсы, они просты в управлении (количество персонала на ГЭС в 15-20 раз меньше, чем на ГРЭС), имеют высокий КПД (более 80%), производят самую дешевую энергию.

Определяющее влияние на размещение гидроэлектростанций оказывают размеры запасов гидроресурсов, природные (рельеф местности, характер реки, ее режим и др.) и хозяйственные (размер ущерба от затопления территории, связанного с созданием плотины и водохранилища ГЭС, ущерба рыбному хозяйству и др.), условия их использования.

Запасы гидроресурсов и эффективность использования водной энергии в районах России различны. Большая часть гидроэнергоресурсов страны (более 2/3 запасов) сосредоточена в Восточной Сибири и на Дальнем Востоке. В этих же районах исключительно благоприятны природные условия для строительства и функционирования ГЭС – многоводность, естественная зарегулированность рек (например, реки Ангары озером Байкал), позволяющие вырабатывать электроэнергию на мощных ГЭС равномерно, без сезонных колебаний; наличие скальных оснований для возведения высоких платин и др.

Эти и другие особенности обуславливают здесь более высокую экономическую эффективность строительства ГЭС (удельные капиталовложения в 2-3 раза ниже, а стоимость электроэнергии в 4-5 раз дешевле), чем в районах европейской части страны. Поэтому самые крупные в стране ГЭС построены на реках Восточной Сибири (Ангара, Енисей). На Ангаре, Енисее и других реках России строительство ГЭС ведется, как правило, каскадами, которые представляют собой группу электростанций, расположенных ступенями по течению водного потока, для последовательности использования его энергии. Крупнейший в мире Ангаро-Енисейский гидроэнергетический каскад имеет общую мощность около 22 млн кВт. В его состав входят гидроэлектростанции: Саяно-Шушенская, Красноярская, Иркутская, Братская, Усть-Илимская.

Каскад из мощных электростанций создан также в европейской части страны на Волге и Каме (Волжско-Камский каскад): Волжская (вблизи Самары), Волжская (вблизи Волгограда), Саратовская, Чебоксарская, Воткинская и др.

Менее мощные ГЭС созданы на Дальнем Востоке, в Западной Сибири, на Северном Кавказе и в других районах России. В европейской части страны, испытывающей острый дефицит в электроэнергии, весьма перспективно строительство особого вида гидроэлектростанций – гидроаккумулирующих (ГАЭС). Одна из таких электростанций уже построена – Загорская ГАЭС (1,2 млн. кВт) в Московской области.

Положительные свойства ГЭС : более высокая маневренность и надежность работы оборудования; высокая производительность труда; возобновляемость источника энергии; отсутствие затрат на добычу, перевозку и удаление отходов топлива; низкая себестоимость.

Отрицательные свойства ГЭС : возможность затопления населенных пунктов, сельхозугодий и коммуникаций; отрицательное воздействие на фору, фауну; дороговизна строительства.

Атомные электростанции (АЭС) производят электроэнергию более дешевую, чем ТЭС, работающих на угле или мазуте. Их доля в суммарной выработке электроэнергии в России не превышает 11% (в Литве – 76%, Франции – 76%, Бельгии – 65%, Швеции – 51%, Словакии – 49%, ФРГ – 34%, Японии – 30%, США – 20%).

Главным фактором размещения атомных электростанций, использующих в своей работе высокотранспортабельное, ничтожное по весу топливо (для полной годовой загрузки АЭС требуется всего несколько килограммов урана), – потребительский. Крупнейшие АЭС в нашей стране в основном расположены в районах с напряженным топливно-энергетическим балансом. В России действуют 10 АЭС, на которых функционирует 30 энергоблоков. На АЭС эксплуатируется реакторы трех основных типов: водо-водяные (ВВЭР), большой мощности канальные урано-графитовые (РБМК) и на быстрых нейтронах (БН). Атомные электростанции в России объедены в концерн «Росэнергоатом».

Положительные свойства АЭС : их можно строить в любом районе, независимо от его энергетических ресурсов; атомное топливо отличается большим содержанием энергии; АЭС не делают выбросов в атмосферу в условиях безаварийной работы; не поглощают кислород.

Отрицательные свойства АЭС : сложились захоронения радиоактивных отходов (для их вывоза со станций сооружаются контейнеры с мощной защитой и системой охлаждения); тепловое загрязнение используемых АЭС водоемов.

В отечественной электроэнергетике используются альтернативные источники энергии: солнца, ветра, внутреннего тепла земли, морских приливов. Построены природные электростанции (ПЭС). На приливных волнах на Кольском полуострове сооружена Кислогубская ПЭС (400 кВт), который более 30 лет; На терминальных водах Камчатки поострена Паужетская ГеоТЭС. Ветровые энергоустановки имеются в жилых поселках Крайнего Севера, гелиоустановки на Северном Кавказе.

3. Единая энергетическая система страны

Энергосистема – это группы электростанций разных типов, объединенные высоковольтными линиями электропередачи (ЛЭП) и управляемые из одного центра. Энергосистемы в электроэнергетике России объединяют производство, передачу и распределение электроэнергии между потребителями. В энергосистеме для каждой электростанции есть возможность выбрать наиболее экономичный режим работы. Причем если в составе энергосистемы высока доля ГЭС, то ее маневренные возможности повышаются, а себестоимость электроэнергии относительно ниже; наоборот, в системе, объединяющей только ТЭС, они наиболее ограничены, а себестоимость электроэнергии выше.

Для более экономного использования потенциала электростанций России создана Единая энергетическая система (ЕЭС), в которой входят более 700 крупных электростанций, на которых сосредоточено 84% мощности всех электростанций страны. Создание ЕЭС имеет экономические преимущества. Объединенные энергетические системы (ОЭС) Северо-Запада, Центра, Поволжья, Юга, Северного Кавказа, Урала входят в ЕЭС европейской части. Они объединены такими высоковольтными магистралями, как Самара – Москва (500 кВ), Самара – Челябинск, Волгоград – Москва (500 кВ), Волгоград – Донбасс (800 кВ), Москва – Санкт-Петербург (750 кВ).

Основная цель создания и развития Единой энергетической системы России состоит в обеспечении надежного и экономичного электроснабжения потребителей на территории России с максимально возможной реализацией преимуществ параллельной работы энергосистем.

Единая энергетическая система России входит в состав крупного энергетического объединения – Единой энергосистемы (ЕЭС) бывшего СССР, включающего также энергосистемы независимых государств: Азербайджана, Армении, Беларуси, Грузии, Казахстана, Латвии, Литвы, Молдовы, Украины и Эстонии. С ЕЭС продолжают синхронно работать энергосистемы семи стран восточной Европы – Болгарии, Венгрии, Восточной части Германии, Польши, Румынии, Чехии и Словакии.

Электростанциями, входящими в ЕЭС, вырабатывается более 90% электроэнергии, производимой в независимых государствах – бывших республиках СССР. Объединение энергосистем в ЕЭС позволяет: обеспечить снижение необходимой суммарной установленной мощности электростанций за счет совмещения максимумов нагрузки энергосистем, которые имеют разницу поясного времени и отличия в графиках нагрузки; сократить требуемую резервную мощность на электростанциях; осуществить наиболее рациональное использование располагаемых первичных энергоресурсов с учетом изменяющейся топливной конъюнктуры; удешевить энергетическое строительство; улучшить экологическую ситуацию.

Для совместной работы электроэнергетических объектов, функционирующих в составе Единой энергосистемы, создан координационный орган Электроэнергетический Совет стран СНГ.

Система российской электроэнергетики характеризуется довольно сильной региональной раздробленностью вследствие современного состояния линий высоковольтных передач. В настоящее время энергосистема Дальнего района не соединена с остальной частью России и функционирует независимо. Соединение энергосистем Сибири и Европейской части России также очень ограничено. Энергосистемы пяти европейских регионов России (Северо-Западного, Центрального, Поволжского, Уральского и Северо-Кавказского) соединены между собой, но пропускная мощность здесь в среднем намного меньше, чем внутри самих регионов. Энергосистемы этих пяти регионов, а также Сибири и Дальнего Востока рассматриваются в России как отдельные региональные объединенные энергосистемы. Они связывают 68 из 77 существующих региональных энергосистем внутри страны. Остальные девять энергосистем полностью изолированы.

Преимущества системы ЕЭС, унаследовавшей инфраструктуру от ЕЭС СССР, заключаются в выравнивании суточных графиков потребления электроэнергии, в том числе за счет ее последовательных перетоков между часовыми поясами, улучшении экономических показателей электростанций, создании условий для полной электрификации территорий и всего народного хозяйства.

В конце 1992 г. было зарегистрировано Российское акционерное общество энергетики и электрификации (РАО ЕЭС), созданное для управления ЕЭС и организации надежного энергосбережения народного хозяйства и населения. В РАО ЕЭС входят более 700 территориальных АО, оно объединяет около 600 ТЭС, 9 АЭС и более 100 ГЭС. РАО ЕЭС работает параллельно с энергосистемами стран СНГ и Балтии, а также с энергосистемами некоторых стран Восточной Европы. За пределами РАО ЕЭС пока остаются крупные энергосистемы Восточной Сибири.

Контрольный пакет РАО ЕЭС закреплен в государственной собственности. Как естественный монополист компания находится в системе государственного регулирования тарифов на электричество. В отдельных регионах, например на Дальнем Востоке, федеральное правительство субсидирует энерготарифы.

В 1996 году Правительство РФ создало федеральный (общероссийский) оптовый рынок электрической энергии и мощности (ФОРЭМ) для покупки о продажи электроэнергии через сети высоковольтных передач. Практически вся электроэнергия, передаваемая по сетям высоковольтных передач, технически рассматривается как результат сделки на ФОРЭМе. Управляется этот рынок РАО ЕЭС. На ФОРЭМе покупатели и продавцы не заключают контракты друг с другом. Они покупают и продают электроэнергию по фиксированным ценам, а РАО ЕЭС обеспечивает соответствие спроса и предложения. Продавцами электроэнергии, не связанными с РАО ЕЭС, являются атомные электростанции.

4. Проблемы и перспективы развития электроэнергетики.

Основные проблемы развития электроэнергетики России связаны: с технической отсталостью и износом фондов отрасли, несовершенством хозяйственного механизма управления энергетическим хозяйством, включая ценовую и инвестиционную политику, ростом неплатежей энергопотребителей. В условиях кризиса экономики сохраняется высокая энергоемкость производства.

В настоящее время более 18% электростанций полностью выработали свой расчетный ресурс установленной мощности. Очень медленно идет процесс энергосбережения. Правительство пытается решить проблему разных сторон: одновременно идет акционирование отрасли (51% акций остается у государства), привлекаются иностранные инвестиции и начала внедряться программа по снижению энергоемкости производства.

В качестве основных задач развития российской энергетики можно выделить следующее:

1) снижение энергоемкости производства;

2) сохранение единой энергосистемы России;

3) повышение коэффициента используемой мощности энергосистемы;

4) полный переход к рыночным отношениям, освобождение цен на энергоносители, полный переход на мировые цены, возможный отказ от клиринга;

5) скорейшее обновление парка энергосистемы;

6) приведение экологических параметров энергосистемы к уровню мировых стандартов.

Сейчас перед отраслью стоит ряд проблем. Важной является экологическая проблема. На данном этапе, в России выброс вредных веществ в окружающую среду на единицу продукции превышает аналогичный показатель на западе в 6-10 раз.

Выбросы загрязняющих веществ в атмосферу энергокомпаниями РАО «ЕЭС России» в 2005-2007 г.г. (SO 2 , NO 2 , твердых частиц), тыс. тонн.

Снижение выбросов в атмосферу в 2007 г. по сравнению с 2006 г. объясняется уменьшением доли сжигания топлива (мазута и угля) с высоким содержанием серы и золы.

За 2007 год энергокомпании РАО ЕЭС России добились следующих производственно-экологических показателей:

Экстенсивное развитие производства, ускоренное наращивание огромных мощностей привело к тому, что экологический фактор долгое время учитывался крайне мало или вовсе не учитывался. Наиболее не экологична угольная ТЭС, вблизи них радиоактивный уровень в несколько раз превышает уровень радиации в непосредственной близости от АЭС. Использование газа в ТЭС гораздо эффективнее, чем мазута или угля; при сжигании 1 тонны условного топлива образуется 1,7 тонны углерода против 2,7 тонны при сжигании мазута или угля. Экологические параметры, установленные ранее не обеспечивают полной экологической чистоты, в соответствии с ними строилось большинство электростанций.

Новые стандарты экологической чистоты вынесены в специальную государственную программу “Экологически чистая энергетика”. С учетом требований этой программы уже подготовлено несколько проектов и десятки находятся в стадии разработки. Так, существует проект Березовской ГРЭС-2 с блоками на 800 мВт и рукавными фильтрами улавливания пыли, проект ТЭС с парогазовыми установками мощностью по 300 мВт, проект Ростовской ГРЭС, включающий в себя множество принципиально новых технических решений. Отдельно рассмотрим проблемы развития атомной энергетики.

Атомная промышленность и энергетика рассматриваются в Энергетической стратегии (2005-2020гг.) как важнейшая часть энергетики страны, поскольку атомная энергетика потенциально обладает необходимыми качествами для постепенного замещения значительной части традиционной энергетики на ископаемом органическом топливе, а также имеет развитую производственно-строительную базу и достаточные мощности по производству ядерного топлива. При этом основное внимание уделяется обеспечению ядерной безопасности и, прежде всего безопасности АЭС в ходе их эксплуатации. Кроме того, требуется принятие мер по заинтересованности в развитии отрасли общественности, особенно населения, проживающего вблизи АЭС.

Для обеспечения запланированных темпов развития атомной энергетики после 2020 г., сохранения и развития экспортного потенциала уже в настоящее время требуется усиление геологоразведочных работ, направленных на подготовку резервной сырьевой базы природного урана.

Максимальный вариант роста производства электроэнергии на АЭС соответствует как требованиям благоприятного развития экономики, так и прогнозируемой экономически оптимальной структуре производства электроэнергии с учетом географии ее потребления. При этом экономически приоритетной зоной размещения АЭС являются европейские и дальневосточные регионы страны, а также северные районы с дальнепривозным топливом. Меньшие уровни производства энергии на АЭС могут возникнуть при возражениях общественности против указанных масштабов развития АЭС, что потребует соответствующего увеличения добычи угля и мощности угольных электростанций, в том числе в регионах, где АЭС имеют экономический приоритет.

Основные задачи по максимальному варианту: строительство новых АЭС с доведением установленной мощности атомных станций до 32 ГВт в 2010 г. и до 52,6 ГВт в 2020 г.; продление назначенного срока службы действующих энергоблоков до 40-50 лет их эксплуатации с целью максимального высвобождения газа и нефти; экономия средств за счет использования конструктивных и эксплуатационных резервов.

В этом варианте, в частности, намечена достройка в 2000-2010 годы 5 ГВт атомных энергоблоков (двух блоков – на Ростовской АЭС и по одному – на Калининской, Курской и Балаковской станциях) и новое строительство 5,8 ГВт атомных энергоблоков (по одному блоку на Нововоронежской, Белоярской, Калининской, Балаковской, Башкирской и Курской АЭС). В 2011 – 2020 гг. предусмотрено строительство четырех блоков на Ленинградской АЭС, четырех блоков на Северо-Кавказской АЭС, трех блоков Башкирской АЭС, по два блока на Южно-Уральской, Дальневосточной, Приморской, Курской АЭС –2 и Смоленской АЭС – 2, на Архангельской и Хабаровской АТЭЦ и по одному блоку на Нововоронежской, Смоленской и Кольской АЭС – 2.

Одновременно в 2010 – 2020 гг. намечено вывести из эксплуатации 12 энергоблоков первого поколения на Билибинской, Кольской, Курской, Ленинградской и Нововоронежской АЭС.

Основные задачи по минимальному варианту – строительство новых блоков с доведением мощности АЭС до 32 ГВт в 2010 г. и до 35 ГВт в 2020 г. и продление назначенного срока службы действующих энергоблоков на 10 лет.

Основой электроэнергетики России на всю рассматриваемую перспективу останутся тепловые электростанции, удельный вес которых в структуре установленной мощности отрасли составит к 2010 г. 68%, а к 2020 г. – 67-70% (2000 г. – 69%). Они обеспечат выработку, соответственно, 69% и 67-71% всей электроэнергии в стране (2000 г. – 67%).

Учитывая сложную ситуацию в топливодобывающих отраслях и ожидаемый высокий рост выработки электроэнергии на тепловых электростанциях (почти на 40-80 % к 2020 г.), обеспечение электростанций топливом становится в предстоящий период одной из сложнейших проблем в энергетике.

Суммарная потребность для электростанций России в органическом топливе возрастет с 273 млн т у.т. в 2000 г. до 310-350 млн т у.т. в 2010 г. и до 320-400 млн т у.т. в 2020 г. Относительно не высокий прирост потребности в топливе к 2020 г. по сравнению с выработкой электроэнергии связан с практически полной заменой к этому периоду существующего неэкономичного оборудования на новое высокоэффективное, что требует осуществления практически предельных по возможностям вводов генерирующей мощности. В высоком варианте в период 2011-2015 гг. на замену старого оборудования и для обеспечения прироста потребности предлагается вводить 15 млн кВт в год и в период 2016-2020 гг. до 20 млн кВт в год. Любое отставание по вводам приведет к снижению эффективности использования топлива и соответственно к росту его расхода на электростанциях, по сравнению с определенными в Стратегии уровнями.

Необходимость радикального изменения условий топливного обеспечения тепловых электростанций в европейских районах страны и ужесточения экологических требований обусловливает существенные изменения структуры мощности ТЭС по типам электростанций и видам используемого топлива в этих районах. Основным направлением должно стать техническое перевооружение и реконструкция существующих, а также сооружение новых тепловых электростанций. При этом приоритет будет отдан парогазовым и экологически чистым угольным электростанциям, конкурентоспособным в большей части территории России и обеспечивающим повышение эффективности производства энергии. Переход от паротурбинных к парогазовым ТЭС на газе, а позже – и на угле обеспечит постепенное повышение КПД установок до 55 %, а в перспективе до 60 % что позволит существенно снизить прирост потребности ТЭС в топливе.

Для развития Единой энергосистемы России Энергетической стратегией предусматривается:

1) создание сильной электрической связи между восточной и европейской частями ЕЭС России, путем сооружения линий электропередачи напряжением 500 и 1150 кВ. Роль этих связей особенно велика в условиях необходимости переориентации европейских районов на использование угля, позволяя заметно сократить завоз восточных углей для ТЭС;

2) усиление межсистемных связей транзита между ОЭС (объединенной энергетической системой) Средней Волги – ОЭС Центра – ОЭС Северного Кавказа, позволяющего повысить надежность энергоснабжения региона Северного Кавказа, а также ОЭС Урала – ОЭС Средней Волги – ОЭС Центра и ОЭС Урала – ОЭС Северо-Запада для выдачи избыточной мощности ГРЭС Тюмени;

3) усиление системообразующих связей между ОЭС Северо-Запада и Центра;

4) развитие электрической связи между ОЭС Сибири и ОЭС Востока, позволяющей обеспечить параллельную работу всех энергообъединений страны и гарантировать надежное энергоснабжение дефицитных районов Дальнего Востока.

Альтернативная энергетика. Несмотря на то, что Россия по степени использования так называемых нетрадиционных и возобновляемых видов энергии находятся пока в шестом десятке стран мира, развитие этого направления имеет большое значение, особенно учитывая размеры территории страны. Ресурсный потенциал нетрадиционных и возобновляемых источников энергии составляет порядка 5 млрд. т условного топлива в год, а экономический потенциал в самом общем виде достигает не менее 270 млн. т условного топлива.

Пока все попытки использования нетрадиционных и возобновляемых источников энергии в России носят экспериментальный и полуэкспериментальный характер или в лучшем случае такие источники играют роль местных, строго локальных производителей энергии. Последнее относится и к использованию энергии ветра. Это происходит потому, что Россия еще не испытывает дефицита традиционных источников энергии и ее запасы органического топлива и ядерного горючего пока достаточно велики. Однако и сегодня в удаленных или труднодоступных районах России, где нет необходимости строить большую электростанцию, да и обслуживание ее зачастую некому, «нетрадиционные» источники электроэнергии – наилучшее решение проблемы.

Намечаемые уровни развития и технического перевооружения отраслей энергетического сектора страны невозможны без соответствующего роста производства в отраслях энергетического (атомного, электротехнического, нефтегазового, нефтехимического, горношахтного и др.) машиностроения, металлургии и химической промышленности России, а также строительного комплекса. Их необходимое развитие – задача всей экономической политики государства.

Заключение

Сегодня мощность всех электростанций России составляет око­ло 212,8 млн. кВт. В последние годы произошли огромные органи­зационные изменения в энергетике. Создана акционерная компа­ния РАО «ЕЭС России», управляемая советом директоров и осуще­ствляющая производство, распределение и экспорт электроэнергии. Это крупнейшее в мире централизованно управляемое энергетиче­ское объединение. Фактически в России сохранилась монополия на производство электроэнергии.

При развитии энергетики огромное значение придается вопро­сам правильного размещения электроэнергетического хозяйства. Важнейшим условием рационального размещения электрических станций является всесторонний учет потребности в электроэнергии всех отраслей народного хозяйства страны и нужд населения, а также каждого экономического района на перспективу.

В перспективе Россия должна отказаться от строительства но­вых крупных тепловых и гидравлических станций, требующих ог­ромных инвестиций и создающих экологическую напряженность. Предполагается строительство ТЭЦ малой и средней мощности и малых АЭС в удаленных северных и восточных регионах. На Даль­нем Востоке предусматривается развитие гидроэнергетики за счет строительства каскада средних и малых ГЭС. Новые мощные кон­денсационные ГРЭС будут строиться на углях Канско-Ачинского бассейна.\

Список использованных источников

1. Архангельский В. Электроэнергетика – комплекс общегосударственного значения. – БИКИ, №140, 2003

2. Винокуров А.А. Введение в экономическую географию и региональную экономику России. Часть 1. – М., ВЛАДОС-ПРЕСС. 2003

3. Гладкий Ю.Н., Доброскок В.А., Семенов С.П. Социально-экономическая география: Учебное пособие. – М., Наука. 2001

4. Дронов В.П. Экономическая и социальная география. – И. Проспект. 1996

5. Козьева И.А., Кузьбожев Э.Н. Экономическая география и регионалистика: Учебное пособие для вузов. – 2-е изд., перераб. и доп. – Курск. КГТУ. 2004

6. Макаров А. Электроэнергетика России: производственные перспективы и хозяйственные отношения. – Общество и экономика, № 7-8, 2003

7. Экономическая география: Учебное пособие. / Под ред. Жлетикова В.П. – Ростов-на-Дону. Феникс. 2003

8. Экономическая и социальная география России: Учебник для вузов. / Под ред. проф. А.Т. Хрущева – 2-е изд., стереотип. – М. Дрофа. 2002

Реферат на тему “История развития электроэнергетики в России” обновлено: 14 ноября, 2017 автором: Научные Статьи.Ру

© 2024 aytodor.ru -- Портал для автомобилистов