Валы, оси и их опоры. Валы, оси и опоры Опоры валов и осей подшипники качения

Главная / Страховка

Устройства, предназначенные для поддержания движущихся деталей и обеспечения определенного вида движения деталей, называют направляющими .

Направляющие для вращательного движения называют опорами . Понятие “опора” охватывает два звена – цапфу и подшипник. Цапфой называют часть вала или оси, опирающуюся на подшипник.

Точность и надежность работы механизмов и машин во многом зависит от качества опор.

Подшипники – устройства, поддерживающие валы и оси, - воспринимают радиальные и осевые нагрузки, приложенные к валу, и передают их на корпус. Кроме того, подшипник обеспечивает фиксацию вала в определенном положении. Помимо валов и осей подшипники могут поддерживать детали, вращающиеся вокруг осей или валов, например, шкивы, шестерни и т.п.

По виду трения подшипники делят на подшипники скольжения и качения.

В подшипниках скольжения опорный участок вала (цапфа) скользит по поверхности подшипника (рисунок 15).

Рис.15. Подшипники скольжения

Подшипники скольжения появились значительно раньше опор качения – при создании простейших машин. В современном машиностроении подшипники скольжения используют только там, где применение их является предпочтительным. Например, для подшипников особо тяжелых валов (для которых подшипники качения не изготовляют), если необходимо иметь разъемные подшипники (для коленчатых валов) и т.п.

Подшипники скольжения (см. рисунок 15) состоят из двух основных элементов: корпуса 1 и вкладыша 2. Вкладыш, являющийся рабочим элементом, выполняется из антифрикционного материала (бронза, латунь, баббит, специальный чугун, пластмасса). Он находится в непосредственном соприкосновении с цапфой вала и воспринимает от неё нагрузки. Корпус, который может быть разъемным и неразъемным, предназначен для размещения вкладыша и восприятия нагрузок.

Достоинства подшипников скольжения – незначительные размеры в радиальном направлении; простота устройства, изготовления и монтажа; низкая стоимость; малая чувствительность к ударам и толчкам; бесшумность работы. К недостаткам следует отнести: значительные потери на трение, сложность системы смазки, высокие требования к смазке.

В современном машиностроении чаще используют подшипники качения . В них трение скольжения заменяется трением качения посредством установки тел качения между опорными поверхностями подшипника и вала.

Подшипник качения (рисунок 16) – это готовый узел, который в большинстве случаев состоит из наружного 1 и внутреннего 3 колец с углублениями – дорожками качения А , тел качения 2 (шариков или роликов) и сепаратора 4, направляющего и удерживающего тела качения. В некоторых типах подшипников для уменьшения габаритов одно или оба кольца отсутствуют, а иногда отсутствует сепаратор (игольчатые).

Рис.16. Подшипник качения

Достоинства подшипников качения: малые потери на трение и незначительный нагрев, малый расход смазки, небольшие габариты в осевом направлении, невысокая стоимость (массовое производство) и высокая степень взаимозаменяемости. К недостаткам опор качения можно отнести увеличенные габариты в радиальном направлении, чувствительность к ударным и вибрационным нагрузкам, некоторый шум в работе и сложность монтажа.

Все подшипники качения стандартизованы и в массовых количествах выпускаются специализированными заводами.

4.1 Оси и валы .

В современных механизмах наиболее широко используется вращательное движение, которое поддерживается в установившемся режиме неограниченное время. Все движители, находящиеся во вращении, осуществляют это движение вокруг некоторых геометрических осей. Теоретические оси воплощаются на практике в валы и оси. По условиям изготовления и монтажа длину осей и валов во многих случаях ограничивают, составляя их из отдельных отрезков, соединенных между собой с помощью соединительных муфт.

Оси и валы, несущие вращающие детали, должны опираться своими специально приспособленными для этого участками – цапфами (шипами) и пятами – на опорные устройства – подшипники и подпятники. Цапфы предназначены для восприятия радиальной, а пяты осевой нагрузок.

Оси предназначаются только для направления движения и поддержания неподвижно, или свободно посаженных на них деталей и не передают крутящего момента от одной детали к другой. В связи с этим оси могут выполняться как вращающимися, так и неподвижными

и воспринимать лишь поперечные (изгибающие), продольные (растягивающие и сжимающие) нагрузки.

Оси и валы для обеспечения для обеспечения достаточной прочности при минимальной массе выполняются ступенчатой формы.

Такая форма приближается к форме тела с разными сопротивлениями изгибу. Гладкие оси и валы нашли свое применение, вследствие простоты изготовления, их используют там, где на сопрягаемые с ними детали не действуют большие осевые нагрузки. Бывают такие валы коленчатые.

Для уменьшения массы и габаритных размеров длину валов и осей ограничивают. Для уменьшения массы валы изготавливают полыми. Это не приводит к резкому снижению прочности осей и валов, если соотношение между внутренним и наружным диаметром. . Так при масса металла уменьшается примерно на 40%, с момента сопротивления, лишь на 15%. Применение полых осей и валов в ряде случаев позволяет использовать полость для монтажа электропроводов, пропуска жидкости, газов и т. п. Конструкции ступенчатых валов и осей весьма разнообразны. Выбор рациональной формы вала зависит от типа опор вращения, типа деталей насаживаемых на вал последовательности сборки и характера действующих сил. Основными критериями надежной работы валов и осей является жесткость и прочность. Для нахождения минимальных размеров вала, обеспечивающих достаточную прочность и жесткость, составляет расчетную схему. При этом вал рассматривают как балку, лежащую на шарнирных опорах и, нагруженную силами, действующими на закрепленную на ней детали. Условно считают, что сила, от детали, посаженной на вал, передается как сосредоточенная сила, приложенная посередине приложенных элементов (шпонки, штифты и т. п.). Силы реакции в опорах приложенные посередине шарикоподшипника и на расстоянии (0.2 + 0.35)l, в подшипнике скольжения (l – длина уапфы). Рассмотрим схему нагрузок и опорных реакций, а также эпюры изгибающих и вращательных моментов, действующих на вал, на котором закреплены цилиндрическое косозубое и коническое зубчатые колеса.



Эпюры изгибающих моментов от составляющих нагрузок строятся в каждой плоскости осидально, и по ним находят эпюру результирующих моментов. Предварительный расчет валов выполняют с учетом условий прочности на кручение по пониженным допустимым напряжениям

Отпуск диаметра вала

Где = 10…30 МПа условное (пониженное) допустимое напряжение на кручение

Основной расчет валов на кручение и изгиб выполняют по эквивалентному моменту. Эквивалентное нормальное напряжение для валов

Опоры.

Устройства, которые обеспечивают движение одной детали относительно другой в определенном направлении - называются направляющими.

В соответствие с двумя простейшими видами движения (вращательным и поступательным) все направляющие можно разделить на направляющие для вращательного движения и направляющие для поступательного движения. Направляющие для вращательного движения называются опорами. В зависимости от вида трения направляющие могут работать с трением скольжения, качения и упругости. Для опор вращательного движения иногда используют трение о воздух или жидкость. Направляющие в точной механике должны удовлетворять следующим основным требованиям:



Иметь минимальные силы трения и износа

Обладать минимальными зазорами обеспечивающим наибольшую точность перемещения

Быть надежными в работе в широком интервале температур

Иметь плавный ход при передаче рабочего усилия

Расчет направляющих в приборостроении подводиться, прежде всего, на трение ввиду незначительных передаваемых усилий, при необходимости на прочность, износ нагревание.

Опоры для вращательного движения выполняются из двух деталей, образующих вращательную кинематическую пару – уапфы и подшипника, который часто делают виде втулки. Опоры должны предусматривать фиксацию осей либо уапфы от осевых и радиальных перемещения. Опоры вращательного движения в зависимости от вида трения можно разделить на опоры трения скольжения, качения и упругости. К специальным опорам можно отнести воздушные, жидкостные и магнитные. В зависимости от направления сил реакции возникающих в опорных узлах, опоры разделяются на подшипники (нагруженными поперечными силами) и по форме контактных деталей – на цилиндрические, конические, сферические. В зависимости от положения в пространстве и характера воспринимаемой нагрузки цилиндрические опоры делятся на горизонтальные, вертикальные, радиально – упорные и упорные.

Пусть на цапфу действует нагрузка в виде вертикальной силы Q. Момент трения для новой непроработанной цапфы для прираб.

Для твердого материала без смазки

Уапфы, диаметр которых больше 1мм рассчитывают по общим формулам сопротивления материалов

При проектном расчете определяют необходимый диаметр уапфы, задавая Q. Положив коэффициент длины уапфы

Коэффициент длины уапфы характеризует условия эксплуатации опоры. может колебаться в пределах

Также необходима проверка на критическую температуру работы опор

Где - угловая скорость вращения уапфы – рад/с

V - ее окружная скорость м/c

Для повышения прочности цапф, особенно в условиях вибраций применяют уапфы с параболическим пропилом. Прочность параболической уапфы почти в 10 раз превосходит обычную, показанную штрих пунктиром. Для подвижной уапфы ее подшипник делают неподвижным, либо в виде цилиндрического отверстия непосредственно в самой стойке, либо в виде отдельной втулки.

Цилиндрические опоры скольжения, воспринимающие осевые нагрузки, называются подпятниками или упорными подшипниками, форма и размер подпятников зависит от действующей нагрузки, скорости относительного скольжения и допустимого момента трения. Сплошная пята воспринимает значительные осевые нагрузки Q и работает при малых скоростях скольжения. Основным недостатком сплошной пяты является неравномерный износ в виду больших перепадов скоростей на ее поверхности, это приводит к увеличению в средней зоне давления, поэтому при значительных скоростях используют кольцевую пяту, износ которой наиболее равномерен. Во многих приборах с целью уменьшения трения применяют пяту со сферической поверхностью

Размеры опорных поверхностей из условий выдавливания смазочного материала.

Для сплошной пяты

Для кольцевой

Момент трения в сплошной пяте

Для кольцевой

Для сферической пяты момент трения

Недостатком сферических опор является невозможность точного центрирования оси, вследствие гарантированного радиального зазора. Конические опоры могут воспринимать одновременно как радиальные, так и осевые нагрузки. По сравнению с цилиндрическими опорами, они более износостойкие, так как имеют большую рабочую поверхность. Они сложны в изготовлении и требуют индивидуальной притирки. Их делают обычно с двумя полосками, и они являются самоустанавливающимися. Моменты трения в конических опорах значительно больше, чем в цилиндрических и определяются углом .

Опоры на центрах . Являются разновидностью конических опор. Их выполняют в виде двухсторонних сопряжений, конических уапф (центров) с подшипниками, имеющими раззенкованные цилиндрические отверстия.

Контакт между трущимися деталями происходит по коническим поверхностям с малой длиной образующей, поэтому такие опоры могут воспринимать малые нагрузки (обычно 5…10 Н) и работать при малых частотах вращения.

Опоры на центрах являются направляющими, в которых можно регулировать как осевые, так и радиальные зазоры.

Момент трения зависит от угла при вершине конуса уапфы втулки принимают - угол при вершине конуса и 90 втулке.

Шаровыми опорами называются опоры, рабочая поверхность которых представляет пояс шаровой формы. Эти опоры применяют, когда в процессе работы или регулировки механизма подвижная система кроме вращения вокруг оси, может поворачиваться вокруг опорного узла на некоторый угол.

Шаровые опоры позволяют точно фиксировать положение оси. Однако они быстро изнашиваются. Применяют при низкой частоте вращения, при действии на опору только радиальной силы Р, момент трения

В качестве подушечек используются каменные подшипники, изготовленные из рубина, корунда или агата. Кери изготавливают из стали марок У8А – У10А или кабальто-вольфрамового сплава. Твердость HRC – 55…60, полировка.

Ножевые опоры относятся к опорам трения качения. Их применяют в приборах, подвижная система которых находиться в колебательном движении с углом поворота не более +-(8-10). Деталями являются нож с рабочей кромкой, представляющую цилиндрическую поверхность, весьма малого радиуса, и подушечка, опорная поверхность которой может иметь призматическую, цилиндрическую и плоскую поверхность. Наибольшее распространение получил ножевой треугольный профиль с углом при вершине 60 или 45(для стальных ножей) и 60-120 (для ножей из агата).

При колебаниях поиска его рабочая кромка переламывается по поверхность подушки. Чем меньше радиус закругления, тем с большей точностью можно считать, что трение возникающее в опоре, является трением качения. Наибольшие распространение получили подушки призматической формы. Они просты в изготовлении по сравнению с цилиндрическими и сами обеспечивают центрирование.

Валы, оси и их опоры


К атегория:

Утстройство кранов на железнодорожном ходу



Валы, оси и их опоры

Каждая машина состоит из узлов, собранных из отдельных механизмов и деталей. Деталью принято называть неделимую часть машины, состоящую из монолитного куска материала или из нескольких кусков, соединенных между собой неподвижно при помощи сварки или иного неразъемного соединения.
Под механизмами условно будем понимать сочетание двух или нескольких деталей, связанных между собой и обусловливающих вполне определенное движение одной детали относительно другой.

Назначение механизмов состоит в передаче движения или усилия с вполне определенной целью. Любой механизм, какой бы сложности он ни был, состоит из отдельных узлов и деталей.

При рассмотрении механизма можно различить однотипные, однородные по своему назначению детали и соединения. Так, например во многих механизмах, имеющих различное назначение, можно встретить оси, валы, зубчатые передачи, поэтому целесообразно вначале познакомиться с этими наиболее характерными деталями и их соединениями.



Валом называют цилиндрическую деталь (длина которой значительно превосходит диаметр), предназначенную для передачи вращательного движения и крутящего момента.

Если вал по всей своей длине имеет один диаметр, то он называется гладким; если же диаметр по длине вала различен, то такой вал называют ступенчатым.
Кроме гладких и ступенчатых, валы могут быть специальными, например коленчатые валы, и их необходимо рассматривать отдельно.

Осью называют также цилиндрическую деталь, однако в отличие от вала ось не предназначена для передачи движений и усилий вращения, а служит в основном для фиксации вращающейся детали. Если вал, как правило, вращается, то ось в большинстве своем неподвижна, а вращаются детали, посаженные на эту ось. Исключение из этого общего правила составляет ось колесной пары вагона или локомотива, которая во время работы вращается.

Материалом для изготовления валов и осей служат обыкновенные углеродистые стали преимущественно марок 40 и 45 ГОСТ 1050-60 или Ст. 4 и Ст. 5 ГОСТ 380-60, а также некоторые легированные стали.

Поверхности валов и осей, работающие на трение, рекомендуется до шлифовки термически обрабатывать; в этом случае резко снижается износ и повреждение рабочих поверхностей.

В качестве опор для валов служат различного рода подшипники, которые разделяются на две основные группы: прдшипники скольжения и подшипники качения.

Подшипники скольжения предназначены для воспринятая радиальных усилий, направленных перпендикулярно осевой линии вала.

Воспринятие усилий, направленных вдоль вала, во многих случаях возможно при помощи создания рабочей поверхности не только по внутренней полости, но и на боковой стороне подшипника или при помощи постановки нового упора - так называемого подпятника.

Рис. 89. Подшипники скольжения:
а -разъемный подшипник; б-неразъемный (розеточный) подшипник; 1- корпус; 2-крышка; 3 - вкладыш (рис. а), втулка (рис. б); 4 - штифт; 5 -масленка; б -болт; 7 -гайки; 8 - фундаментный болт; 9 - гайка; 10 - шайба

Форма опорной трущейся поверхности подшипника зависит от формы шейки вала, которая чаще всего бывает цилиндрической, но может быть конической или шаровой.

Основными элементами подшипника скольжения (рис. 89) являются: корпус, прикрепляемый к машине или составляющий одно целое с ее станиной, и вкладыши - детали, закладываемые в корпус подшипника и непосредственно соприкасающиеся с рабочей поверхностью вала. Корпус подшипника может иметь различную форму и выполняется цельным или разъемным.

У подшипников с разъемным корпусом крышки с корпусом соединены болтами или шпильками. Для разгрузки болтов от поперечных усилий крышки к корпусу подшипника припасовывают не по ровной плоскости, а с уступом - с так называемым «замком». Материалом для корпуса подшипника служит чугун или сталь.

Для образования антифрикционных поверхностей подшипника, т. е. поверхностей, которые при работе не повреждали бы шеек вала и в то же время были бы сами достаточно стоики к износу, в подшипник вставляют вкладыши. В неразъемные подшипники обычно запрессовывают вкладыш в виде втулки и закрепляют его стопорным винтом. В разъемные подшипники вставляют вкладыши, состоящие в большинстве своем из двух половинок. Материалом для вкладышей служат антифрикционные сплавы - бронза и специальные чугуны или пластмасса типа «стирокрил».

Иногда взамен вкладышей внутреннюю поверхность подшипника заливают специальным антифрикционным сплавом.

Чтобы предохранить вкладыши от продольного смещения, их делают с буртиками, а для предохранения от проворачивания фиксируют штифтами.

Форма и размеры вкладышей имеют большое значение для работы подшипника. Вкладыши должны быть достаточно прочными и возможно большей поверхностью соприкасаться с корпусом подшипника, благодаря чему улучшаются условия отвода тепла. Чрезмерно слабый вкладыш или малая опорная поверхность его в корпусе может вызывать прогиб вкладыша и защемление вала. Большое значение для нормальной работы подшипника имеет смазка, для чего на валу или на вкладышах выполняют смазочные канавки, обеспечивающие смазывание всей рабочей поверхности вкладыша.

Подшипники качения представляют собой наиболее совершенный вид опор и в современном машиностроении находят все более широкое применение. Подшипники качения разделяются на две основные группы по форме элементов качения: шариковые подшипники и подшипники роликовые, которые в свою очередь могут быть с цилиндрическими роликами, с коническими, витыми, бочкообразными и игольчатыми.

По способу воспринятия нагрузки подшипники качения различаются: на подшипники радиальные, воспринимающие усилия, направленные лишь перпендикулярно оси вала; упорные, воспринимающие усилия, направленные вдоль оси вала, и радиально-упорные, воспринимающие как перпендикулярные, так и продольные усилия.

По способности самоустанавливаться при перекосе вала или корпуса подшипники разделяют на самоустанавливающиеся и несамо-устанавливающиеся. В самоустанавливающихся подшипниках внутренняя обойма имеет возможность смещаться, изменять наклон по отношению к наружной обойме подшипника и тем самым выравнивать перекос, допущенный при монтаже оси или вала.

Преимущество подшипников качения перед подшипниками скольжения заключается в том, что в них трение скольжения заменено трением качения, имеющим меньший коэффициент трения. Следовательно, при подшипниках качения меньшая часть энергии затрачивается на преодоление сил трения и в конечном счете на нагрев подшипника.

Хорошо подобранный и правильно установленный подшипник качения способен работать дольше. Он надежнее подшипника скольжения и не требует частой проверки наличия смазки.

Вместе с тем следует отметить, что попадание в подшипник грязи или песка быстро выводит его из строя. Поэтому при установке подшипников особенно важно принять меры против их загрязнения; подшипник должен быть установлен в хорошо закрытом корпусе.

Посадка подшипника в корпус и насадка на валы могут быть выполнены различно в зависимости от характера и назначения механизма. Однако можно придерживаться одного правила: соединение подшипника с вращающимся элементом должно быть неподвижным, напряженным, а в соединении с неподвижным элементом посадка подшипника должна быть более легкой. Если, например, вал вращается, а корпус неподвижен, то подшипник на вал садится неподвижной посадкой, а в корпус входит более свободно.

Места под посадку подшипников должны протачиваться по выбранным в соответствующих таблицах допускам. При установке подшипников с неподвижной посадкой не рекомендуется напрессовывать их ударами. Для облегчения рекомендуется производить посадку подшипника с предварительным нагревом его в горячем масле. В этом случае за счет расширения металла увеличивается внутренний диаметр подшипника и последний легко может быть надет на вал. Точно так же допустима посадка подшипника в предварительно нагретый до температуры 80-90 °С корпус.

К атегория: - Утстройство кранов на железнодорожном ходу

Валы, оси и опоры


К атегория:

Слесарно-механосборочные работы

Валы, оси и опоры

Для передачи вращательного движения наиболее характерными типовыми деталями и сборочными единицами машин являются валы, оси, цапфы, опоры валов и осей (подшипники) и муфты.

Валы - детали машин, предназначенные для передачи крутящего момента (мощности) и несущие на себе такие детали, как шкивы, зубчатые колеса, муфты, маховики. Валы могут иметь различное расположение: горизонтальное, вертикальное, наклонное. При работе валы подвергаются скручиванию, изгибу, поперечным и продольным нагрузкам. Валы могут быть цилиндрическими, гладкими, пустотелыми, ступенчатыми, коленчатыми, кривошипными и составными. Когда вал машины или механизма расположен по отношению к валу двигателя так, что осуществить их связь жесткими передачами невозможно, применяют гибкие проволочные валы, например привод дистанционного управления и контроля.

Оси - детали машин, служащие лишь опорой для вращающихся деталей (не передают крутящего момента). Оси могут быть неподвижными, когда вращающиеся детали свободно насажены, или подвижными, когда детали закреплены и вращаются вместе с осью. Форма осей цилиндрическая (прямая или ступенчатая).

Рис. 1. Валы, оси и опоры: а - вал на опорах; 6 - подшипник скольжения неразъемный, в, г - подшипник скольжения разъемный; 1 - цапфа-шип, 2 - опора (подшипник), 3 - шкив, 4 - монтажная шейка, J - опора (подшипник), 6 - зубчатое колесо, 7 - цапфа-шейка, 8 - ось, 9 - блок

Цапфы- опорные концы вала. В зависимости от положения на валу и направления нагрузки цапфы делятся на шипы, шейки и пяты.

Шип и шейка принимают радиальную нагрузку, пята- осевую. Шип располагается на конце вала или оси и через него не передается крутящий момент. Шейка ставится на участках вала, подверженных действию крутящего момента.

Шипы и шейки имеют цилиндрическую (реже коническую или шаровую) форму. Пята представляет собой торцовую часть оси или вала.

Опоры в машинах являются неподвижными частями, на которые опираются вращающиеся вал и ось. В зависимости от направления прилагаемой нагрузки опоры делятся на подшипники и подпятники.

Подшипники принимают радиальную нагрузку, а под-пятники - осевую. При комбинированной нагрузке используют радиально-упорные опоры. В зависимости от рода трения различают опоры скольжения и опоры качения.


ВАЛЫ И ОСИ

Колёса передач установлены на специальных продолговатых деталях круглого сечения. Среди таких деталей различают оси и валы .

Ось – деталь, служащая для удержания колёс и центрирования их вращения. Вал – ось, передающая вращающий момент.

Не следует путать понятия "ось колеса", это деталь и "ось вращения", это геометрическая линия центров вращения.

Формы валов и осей весьма многообразны от простейших цилиндров до сложных коленчатых конструкций. Известны конструкции гибких валов, которые предложил шведский инженер Карл де Лаваль ещё в 1889 г.

Форма вала определяется распределением изгибающих и крутящих моментов по его длине. Правильно спроектированный вал представляет собой балку равного сопротивления.

Валы и оси вращаются, а следовательно, испытывают знакопеременные нагрузки, напряжения и деформации. Поэтому поломки валов и осей имеют усталостный характер.



Причины поломок валов и осей прослеживаются на всех этапах их "жизни".

1. На стадии проектирования – неверный выбор формы, неверная оценка концентраторов напряжений.

2. На стадии изготовления – надрезы, забоины, вмятины от небрежного обращения.

3. На стадии эксплуатации – неверная регулировка подшипниковых узлов.

Для работоспособности вала или оси необходимо обеспечить:

è объёмную прочность (способность сопротивляться M изг и М крут );

è поверхностную прочность (особенно в местах соединения с другими деталями);

è жёсткость на изгиб;

è крутильную жёсткость (особенно для длинных валов).

Все валы в обязательном порядке рассчитывают на объёмную прочность .

Схемы нагружения валов и осей зависят от количества и места установки на них вращающихся деталей и направления действия сил. При сложном нагружении выбирают две ортогональные плоскости (например, фронтальную и горизонтальную) и рассматривают схему в каждой плоскости. Рассчитываются, конечно, не реальные конструкции, а упрощённые расчётные модели, представляющие собой балки на шарнирных опорах, балки с заделкой и даже статически неопределимые задачи .

При составлении расчётной схемы валы рассматривают как прямые брусья, лежащие на шарнирных опорах. При выборе типа опоры полагают, что деформации валов малы и, если подшипник допускает хотя бы небольшой наклон или перемещение цапфы, его считают шарнирно-неподвижной или шарнирно-подвижной опорой. Подшипники скольжения или качения, воспринимающие одновременно радиальные и осевые усилия, рассматривают как шарнирно-неподвижные опоры, а подшипники, воспринимающие только радиальные усилия, - как шарнирно-подвижные.

Такие задачи хорошо известны студентам из курсов теоретической механики (статики) и сопротивления материалов.

Расчёт вала на объёмную прочность выполняют в три этапа.

I. Предварительный расчёт валов

Выполняется на стадии проработки Технического Задания, когда известны только вращающие моменты на всех валах машины. При этом считается, что вал испытывает только касательные напряжения кручения

t кр = М вр / W p £ [ t ] кр ,

где W p - полярный момент сопротивления сечения.

Для круглого сечения: W p = pd 3 /16 , [ t ] кр = 15 ¸ 20 Н/мм 2 .

Условие прочности по напряжениям кручения удобно решать относительно диаметра вала

Это – минимальный диаметр вала. На всех других участках вала он может быть только больше. Вычисленный минимальный диаметр вала округляется до ближайшего большего из нормального ряда. Этот диаметр является исходным для дальнейшего проектирования.

II. Уточнённый расчёт валов

На данном этапе учитывает не только вращающий, но и изгибающие моменты. Выполняется на этапе эскизной компоновки, когда предварительно выбраны подшипники, известна длина всех участков вала, известно положение всех колёс на валу, рассчитаны силы, действующие на вал.

Чертятся расчётные схемы вала в двух плоскостях. По известным силам в зубчатых передачах и расстояниям до опор строятся эпюры изгибающих моментов в горизонтальной и фронтальной плоскостях. Затем вычисляется суммарный изгибающий момент

где α =0,75 или 1 в зависимости от принятой энергетической теории прочности , принимаемый большинством авторов равным 1 .

Вычисляется эквивалентное напряжение от совместного действия изгиба и кручения s экв = М экв / W p .

Уравнение также решается относительно минимального диаметра вала

Или то же самое для сравнения с допускаемыми нормальными напряжениями:

Полученный в уточнённом расчёте минимальный диаметр вала принимается окончательно для дальнейшего проектирования.

III. Расчёт вала на выносливость

Выполняется как проверочный на стадии рабочего проектирования, когда практически готов рабочий чертёж вала, т.е. известна его точная форма, размеры и все концентраторы напряжений: шпоночные пазы, кольцевые канавки, сквозные и глухие отверстия, посадки с натягом, галтели (плавные, скруглённые переходы диаметров).

При расчёте полагается, что напряжения изгиба изменяются по симметричному циклу, а касательные напряжения кручения – по отнулевому пульсирующему циклу.

Проверочный расчёт вала на выносливость по существу сводится к определению фактического коэффициента запаса прочности n , который сравнивается с допускаемым

Здесь n s и n t - коэффициенты запаса по нормальным и касательным напряжениям

где s -1 и τ -1 – пределы выносливости материала вала при изгибе и кручении с симметричным циклом; k σ и k τ – эффективные коэффициенты концентрации напряжений при изгибе и кручении, учитывающие галтели, шпоночные канавки, прессовые посадки и резьбу; ε α и ε τ – масштабные коэффициенты диаметра вала; s a и τ a – амплитудные значения напряжений; s m и τ m – средние напряжения цикла (s m = 0 , τ m =τ a ); ψ σ и ψ τ – коэффициенты влияния среднего напряжения цикла на усталостную прочность зависят от типа стали.

Вычисление коэффициентов запаса прочности по напряжениям подробно излагалось в курсе "Сопротивление материалов", в разделе "Циклическое напряжённое состояние".

Если коэффициент запаса оказывается меньше требуемого, то сопротивление усталости можно существенно повысить, применив поверхностное упрочнение: азотирование, поверхностную закалку токами высокой частоты, дробеструйный наклёп, обкатку роликами и т.д. При этом можно получить увеличение предела выносливости до 50% и более.

КОНТРОЛЬНЫЕ ВОПРОСЫ

s Чем различаются валы и оси?

s Какой динамический характер имеют напряжения изгиба в валах и осях?

s Каковы причины поломок валов и осей?

s В каком порядке выполняются этапы прочностного расчёта валов?

s Какой диаметр определяется в проектировочном расчёте валов?

ОПОРЫ ВАЛОВ И ОСЕЙ – ПОДШИПНИКИ

Валы и оси поддерживаются специальными деталями, которые являются опорами. Название "подшипник" происходит от слова "шип" (англ. shaft, нем. zappen, голл. shiffen – вал ). Так раньше называли хвостовики и шейки вала, где, собственно говоря, подшипники и устанавливаются.

Назначение подшипника состоит в том, что он должен обеспечить надёжное и точное соединение вращающейся (вал, ось) детали и неподвижного корпуса. Следовательно, главная особенность работы подшипника – трение сопряжённых деталей.

По характеру трения подшипники разделяют на две большие группы:

è подшипники скольжения (трение скольжения);

è подшипники качения (трение качения).

© 2024 aytodor.ru -- Портал для автомобилистов