Динамическая модель кривошипно шатунного механизма. Кинематический расчет кшм

Главная / Гибдд

2.1.1 Выбор л и длинны Lш шатуна

В целях уменьшения высоты двигателя без значительного увеличения инерционных и нормальных сил величина отношения радиуса кривошипа к длине шатуна была принята в тепловом расчете л = 0,26 двигателя прототипа.

При этих условиях

где R радиус кривошипа - R = 70 мм.

Результаты расчета перемещения поршня, проведенные на ЭВМ, приведены в приложении В.

2.1.3 Угловая скорость вращения коленчатого вала щ, рад/с

2.1.4 Скорость поршня Vп, м/с

2.1.5 Ускорение поршня j, м/с2

Результаты расчета скорости и ускорения поршня приведены в Приложении В.

Динамика

2.2.1 Общие сведения

Динамический расчет кривошипно-шатунного механизма заключается в определении суммарных сил и моментов, возникающих от давления газов и от сил инерции. По этим силам производятся расчеты основных деталей на прочность и износ, а также определение неравномерности крутящего момента и степени неравномерности хода двигателя.

Во время работы двигателя на детали кривошипно-шатунного механизма действуют: силы от давления газов в цилиндре; силы инерции возвратно-поступательно движущихся масс; центробежные силы; давление на поршень со стороны картера (приблизительно равное атмосферному давлению) и силы тяжести (они в динамическом расчете обычно не учитываются).

Все действующие силы в двигателе воспринимаются: полезным сопротивлениям на коленчатом валу; силами трения и опорами двигателя.

В течение каждого рабочего цикла (720 для четырехтактного двигателя) силы, действующие в кривошипно-шатунном механизме, непрерывно изменяются по величине и направлению. Поэтому для определения характера изменения этих сил по углу поворота коленчатого вала их величины определяют для ряда отдельных положений вала обычно через каждые 10…30 0 .

Результаты динамического расчета сводят в таблицы.

2.2.2 Силы давления газов

Силы давления газов, действующие на площадь поршня, для упрощения динамического расчета заменяют одной силой, направленной по оси цилиндра и приближенной к оси поршневого пальца. Определяется эта сила для каждого момента времени (угла ц) по действительной индикаторной диаграмме, построенной на основании теплового расчета (обычно для нормальной мощности и соответствующего ей числа оборотов).

Перепостроение индикаторной диаграммы в развернутую диаграмму по углу поворота коленчатого вала обычно осуществляется по методу проф. Ф.А. Брикса. Для этого под индикаторной диаграммой строиться вспомогательная полуокружность радиусом R = S/2 (см. рисунок на листе 1 формата А1 под названием «Индикаторная диаграмма в P-S координатах»). Далее от центра полуокружности (точка О) в сторону Н.М.Т. откладывается поправка Брикса равная Rл/2. Полуокружность делят лучами из центра О на несколько частей, а из центра Брикса (точка О) проводят линии параллельные этим лучам. Точки полученные на полуокружности, соответствуют определенным лучам ц (на рисунке формата А1 интервал между точками равен 30 0). Из этих точек проводятся вертикальные линии до пересечения с линиями индикаторной диаграммы, и полученные величины давлений сносятся на вертикали

соответствующих углов ц. Развертку индикаторной диаграммы обычно начинают от В.М.Т. в процессе хода впуска:

а) индикаторную диаграмму (см. рисунок на листе 1 формата А1), полученную в тепловом расчёте, развёртывают по углу поворота кривошипа по методу Брикса;

Ппоправка Брикса

где Ms - масштаб хода поршня на индикаторной диаграмме;

б) масштабы развёрнутой диаграммы: давлений Мр = 0,033 МПа/мм; угла поворота кривошипа Мф = 2 гр п к. в. / мм;

в) по развёрнутой диаграмме через каждые 10 0 угла поворота кривошипа определяются значения Др г и наносятся в таблицу динамического расчёта (в таблице значения даны через 30 0):

г) по развернутой диаграмме через каждые 10 0 следует учесть, чтодавление на свернутой индикаторной диаграмме отсчитывается от абсолютногонуля, а на развёрнутой диаграмме показывается избыточное давление надпоршнем

МН/м 2 (2.7)

Следовательно, давления в цилиндре двигателя, меньшие атмосферных, на развёрнутой диаграмме будут отрицательными. Силы давления газов, направленные к оси коленчатого вала - считаются положительными, а от коленчатого вала - отрицательными.

2.2.2.1 Сила давления газов на поршень Рг, Н

Р г = (р г - р 0)F П ·*10 6 Н, (2.8)

где F П выражена в см 2 , а р г и р 0 - в МН /м 2 , .

Из уравнения (139, ) следует, что кривая сил давления газов Р г по углу поворота коленчатого вала будет иметь тот же характер изменения, что и кривая давления газов Др г.

2.2.3 Приведение масс частей кривошипно-шатунного механизма

По характеру движения массы деталей кривошипно-шатунного механизма можно разделить на массы, движущихся возвратно-поступательно (поршневая группа и верхняя головка шатуна), массы, совершающие вращательное движение (коленчатый вал и нижняя головка шатуна): массы, совершающие сложное плоско-параллельное движение (стержень шатуна).

Для упрощения динамического расчета действительный кривошипно-шатунный механизм заменяется динамически эквивалентной системой сосредоточенных масс.

Масса поршневой группы не считается сосредоточенной на оси

поршневого пальца в точке А [ 2, рисунок 31, б].

Масса шатунной группы m Ш заменяется двумя массами, одна из которых m ШП сосредоточивается на оси поршневого пальца в точке А - а другая m ШК -- на оси кривошипа в точке Б Величины этих масс определяются из выражений:

где L ШК - длина шатуна;

L, MK - расстояние от центра кривошипной головки до центра тяжести шатуна;

L ШП - расстояние от центра поршневой головки до центра тяжести шатуна

С учётом диаметра цилиндра- отношения S/D двигателя с рядным расположением цилиндров и достаточно высокого значения р г устанавливается масса поршневой группы (поршень из алюминиевого сплава) т П = m j

2.2.4 Силы инерции

Силы инерции, действующие в кривошипно-шатунном механизме, в соответствии с характером движения приведённых масс Р г, и центробежные силы инерции вращающихся масс К R (рисунок 32, а; ).

Сила инерции от возвратно-поступательно движущихся масс

2.2.4.1 Из полученных на ЭВМ расчетах определяют значение силы инерции возвратно-поступательно движущихся масс:

Аналогично ускорению поршня сила Р j: может быть представлена в виде суммы сил инерции первого Р j1 и второго Р j2 порядков

В уравнениях (143) и (144), знак минус показывает, что сила инерции направлена в сторону, противоположную ускорению. Силы инерции возвратно-поступательно движущихся масс действуют по оси цилиндра и так же как силы давления газов, считаются положительными, если они направлены к оси коленчатого вала, и отрицательными, если они направлены от коленчатого вала.

Построение кривой силы инерции возвратно-поступательно движущихся масс осуществляется по методам, аналогичным построению кривой ускорения

поршня (см. рисунок 29, ), но в масштабе М р и М н в мм, в котором построена диаграмма сил давления газов .

Расчёты Р J должны производиться для тех же положений кривошипа (углов ц), для которых определялись Др г и Дрг

2.2.4.2 Центробежная сила инерции вращающихся масс

Сила К R постоянна по величине (при щ = const), действует по радиусу кривошипа и постоянно направлена от оси коленчатого вала.

2.2.4.3 Центробежная сила инерции вращающихся масс шатуна

2.2.4.4 Центробежная сила, действующая в кривошипно-шатунном механизме

2.2.5 Суммарные силы, действующие в кривошипно-шатунном механизме:

а) суммарные силы, действующие в кривошипно-шатунном механизме, определяются путём алгебраического сложения сил давления газов и сил инерции возвратно-поступательно движущихся масс. Суммарная сила, сосредоточенная на оси поршневого пальца

P=P Г +P J ,Н (2.17)

Графически кривая суммарных сил строится с помощью диаграмм

Рг=f(ц) и Р J = f(ц) (см. рисунок 30, ) При суммировании этих двух диаграмм,построенных в одном масштабе М Р, полученная диаграмма Р будет в том жемасштабе Мр.

Суммарная сила Р, как и силы Р г и Р J направлена по оси цилиндрамприложена к оси поршневого пальца.

Воздействие от силы Р передаётся на стенки цилиндра перпендикулярно его оси, и на шатун по направлению его оси.

Сила N, действующая перпендикулярно оси цилиндра, называется нормальной силой и воспринимается стенками цилиндра N, Н

б) нормальная сила N считается положительной, если создаваемый ею момент относительно оси коленчатого вала шеек имеет направление, противоположное направлению вращения вата двигателя.

Значения нормальной силы Ntgв определяют для л = 0.26 по таблице

в) сила S, действующая вдоль шатуна, воздействует на него и далее передается* кривошипу. Она считается положительной, если сжимает шатун, и отрицательной, если его растягивает.

Сила, действующая вдоль шатуна S, Н

S = P(1/cos в),H (2.19)

От действия силы S на шатунную шейку возникают две составляющие силы:

г) сила направленная по радиусу кривошипа К, Н

д) тангенциальная сила, направленная по касательной к окружности радиуса кривошипа, Т, Н

Сила Т считается положительной, если она сжимает щеки колена.

2.2.6 Среднее значение тангенциальной силы за цикл

где Р Т - среднее индикаторное давление, МПа;

F п - площадь поршня, м;

ф - тактность двигателя-прототипа

2.2.7 Крутящие моменты:

а) по величине д) определяется крутящий момент одного цилиндра

М кр.ц =Т*R, м (2.22)

Кривая изменения силы Т в зависимости от ц является также и кривой изменения М кр.ц, но в масштабе

М м = М р *R, Н*м в мм

Для построения кривой суммарного крутящего момента М кр многоцилиндрового двигателя производят графическое суммирование кривых крутящих моментов каждого цилиндра, сдвигая одну кривую относительно другой на угол поворота кривошипа между вспышками. Так как от всех цилиндров двигателя величины и характер изменения крутящих моментов по углу поворота коленчатого вала одинаковы, отличаются лишь угловыми интервалами, равными угловым интервалам между вспышками в отдельных цилиндрах, то для подсчёта суммарного крутящего момента двигателя достаточно иметь кривую крутящего момента одного цилиндра

б) для двигателя с равными интервалами между вспышками суммарный крутящий момент будет периодически изменяться (i -- число цилиндров двигателя):

Для четырехтактного двигателя через О -720 / L град. При графическом построении кривой М кр (см. лист ватмана 1 формата А1) кривая М кр.ц одного цилиндра разбивается на число участков, равное 720 - 0 (для четырёхтактных двигателей), все участки кривой сводятся в один и суммируются.

Результирующая кривая показывает изменение суммарного крутящего момента двигателя в зависимости от угла поворот коленчатого вала.

в) среднее значение суммарного крутящего момента М кр.ср определяют по площади заключённой под кривой М кр.

где F 1 и F 2 -- соответственно положительная площадь и отрицательная площадь в мм 2 , заключённые между кривой М кр и линией АО и эквивалентные работе, совершаемой суммарным крутящим моментом (при i ? 6 отрицательная площадь, как правило, отсутствует);

ОА - длина интервала между вспышками на диаграмме, мм;

М м -- масштаб моментов. Н * м в мм.

Момент М кр.ср представляет собой средний индикаторный момент

двигателя. Действительный эффективный крутящий момент, снимаемый с вала двигателя.

где з м - механический к. п. д. двигателя

Основные расчетные данные по силам, действующих в кривошипно-шатунном механизме по углу поворота коленчатого вала приведены в приложении Б.

Кинематика кривошипно-шатунного механизма

В автотракторных ДВС в основном используются два типа кривошипно-шатунного механизма (КШМ): центральный (аксиальный) и смещенный (дезаксиальный) (рис. 5.1). Смещенный механизм можно создать, если ось цилиндра не пересекает ось коленчатого вала ДВС или смещена относительно оси поршневого пальца. Многоцилиндровый ДВС формируется на основе указанных схем КШМ в виде линейной (рядной) или многорядной конструкции.

Рис. 5.1. Кинематические схемы КШМ автотракторного двигателя: а - центрального линейного; б - смещенного линейного

Законы движения деталей КШМ изучаются, используя его структуру, основные геометрические параметры его звеньев, без учета сил, вызывающих его движение, и сил трения, а также при отсутствии зазоров между сопряженными подвижными элементами и постоянной угловой скорости кривошипа.

Основными геометрическими параметрами, определяющими законы движения элементов центрального КШМ, являются (рис. 5.2, а): г- радиус кривошипа коленчатого вала; / ш - длина шатуна. Параметр А = г/1 ш является критерием кинематического подобия центрального механизма. В автотракторных ДВС используются механизмы с А = 0,24...0,31. В де- заксиальных КШМ (рис. 5.2, б) величина смешения оси цилиндра (пальца) относительно оси коленчатого вала (а) влияет на его кинематику. У автотракторных ДВС относительное смещение к = а/г = 0,02...0,1 - дополнительный критерий кинематического подобия.

Рис. 5.2. Расчетная схема КШМ: а - центрального; б - смещенного

Кинематика элементов КШМ описывается при движении поршня, начиная от ВМТ к НМТ, и вращении кривошипа по часовой стрелке законами изменения по времени (/) следующих параметров:

  • ? перемещения поршня - х;
  • ? угла поворота кривошипа - (р;
  • ? угла отклонения шатуна от оси цилиндра - (3.

Анализ кинематики КШМ проводится при постоянстве угловой скорости кривошипа коленчатого вала со или частоты вращения коленчатого вала («), связанных между собой соотношением со = кп/ 30.

При работе ДВС подвижные элементы КШМ совершают следующие перемещения:

  • ? вращательное движение кривошипа коленчатого вала относительно его оси определяется зависимостями угла поворота ср, угловой скорости со и ускорения е от времени t. При этом ср = со/, а при постоянстве со - е = 0;
  • ? возвратно-поступательное движение поршня описывается зависимостями его перемещения х, скорости v и ускорения j от угла поворота кривошипа ср.

Перемещение поршня центрального КШМ при повороте кривошипа на угол ср определяется как сумма его смещений от поворота кривошипа на угол ср (Xj) и от отклонения шатуна на угол р (х п) (см. рис. 5.2):

Эту зависимость, используя соотношение X = г/1 ш, связь между углами ср и р (Asincp = sinp), можно представить приближенно в виде суммы гармоник, кратных частоте вращения коленчатого вала. Например, для X = 0,3 первые амплитуды гармоник соотносятся как 100:4,5:0,1:0,005. Тогда с достаточной для практики точностью описание перемещения поршня можно ограничить двумя первыми гармониками. Тогда при ср = со/

Скорость поршня определяют как и приближенно

Ускорение поршня вычисляют по формуле и приближенно

В современных ДВС v max = 10...28 м/с, y max = 5000...20 000 м/с 2 . С ростом скорости поршня повышаются потери на трение и износ двигателя.

Для смещенного КШМ приближенные зависимости имеют вид

Данные зависимости по сравнению с их аналогами для центрального КШМ отличаются дополнительным членом, пропорциональным кк. Так как для современных двигателей его величина составляет кк = 0,01...0,05, то его влияние на кинематику механизма невелико и на практике им обычно пренебрегают.

Кинематика сложного плоскопараллельного движения шатуна в плоскости его качания складывается из перемещения его верхней головки с кинематическими параметрами поршня и вращательного движения относительно точки сочленения шатуна с поршнем.

При работе двигателя в КШМ действуют следующие основные силовые факторы: силы давления газов, силы инерции движу­щихся масс механизма, силы трения и момент полезного сопро­тивления. При динамическом анализе КШМ силами трения обычно пренебрегают.

Рис. 8.3. Воздействие на элементы КШМ:

а - газовых сил; б - силы инерции Р j ; в - центробежной силы инерции К r

Силы давления газов. Сила давления газов возникает в резуль­тате реализации в цилиндрах рабочего цикла. Эта сила действует на поршень, и ее значение определяется как произведение пере­пада давления на его площадь: Р г = (р г - р 0)F п (здесь р г - давление в цилиндре двигателя над поршнем; р 0 - давление в картере; F п - площадь поршня). Для оценки динамической нагруженности эле­ментов КШМ важное значение имеет зависимость силы Р г от вре­мени

Сила давления газов, действующая на поршень, нагружает подвижные элементы КШМ, передается на коренные опоры кар­тера и уравновешивается внутри двигателя за счет упругой дефор­мации несущих элементов блок-картера силой , действующей на головку цилиндра (рис. 8.3, а). Эти силы не передаются на опо­ры двигателя и не вызывают его неуравновешенности.

Силы инерции движущихся масс. КШМ представляет собой си­стему с распределенными параметрами, элементы которой дви­жутся неравномерно, что приводит к возникновению инерцион­ных нагрузок.

Детальный анализ динамики такой системы принципиально возможен, однако сопряжен с большим объемом вычислений. Поэтому в инженерной практике для анализа динамики двигате­ля используют модели с сосредоточенными параметрами, создан­ные на основе метода замещающих масс. При этом для любого момента времени должна выполняться динамическая эквивалент­ность модели и рассматриваемой реальной системы, что обеспе­чивается равенством их кинетических энергий.

Обычно используют модель из двух масс, связанных между со­бой абсолютно жестким безынерционным элементом (рис. 8.4).

Рис. 8.4. Формирование двухмассовой динамической модели КШМ

Первая замещающая масса m j сосредоточена в точке сопряжения поршня с шатуном и совершает возвратно-поступательное дви­жение с кинематическими параметрами поршня, вторая m r рас­полагается в точке сопряжения шатуна с кривошипом и вращает­ся равномерно с угловой скоростью ω.

Детали поршневой группы совершают прямолинейное возврат­но-поступательное движение вдоль оси цилиндра. Так как центр масс поршневой группы практически совпадает с осью поршне­вого пальца, то для определения силы инерции Р j п достаточно знать массу поршневой группы m п, которую можно сосредоточить в данной точке, и ускорение центра масс j, которое равно уско­рению поршня: Р j п = - m п j.

Кривошип коленчатого вала совершает равномерное вращатель­ное движение. Конструктивно он состоит из совокупности двух половин коренной шейки, двух щек и шатунной шейки. При рав­номерном вращении на каждый из указанных элементов криво­шипа действует центробежная сила, пропорциональная его массе и центростремительному ускорению.

В эквивалентной модели кривошип заменяют массой m к, от­стоящей от оси вращения на расстоянии r. Значение массы m к определяют из условия равенства создаваемой ею центробежной силы сумме центробежных сил масс элементов кривошипа: K к = K r ш.ш + 2K r щ или m к rω 2 = m ш.ш rω 2 + 2m щ ρ щ ω 2 , откуда получим m к = m ш.ш + 2m щ ρ щ ω 2 /r.

Элементы шатунной группы совершают сложное плоскопараллельное движение. В двухмассовой модели КШМ массу шатунной группы m ш разделяют на две замещающие массы: m ш. п, сосредоточенную на оси поршневого пальца, и m ш.к, отнесенную к оси шатунной шейки коленчатого вала. При этом необходимо выполнить следу­ющие условия:

1) сумма масс, сосредоточенных в замещающих точках модели шатуна, должна быть равна массе замещаемого звена КШМ: m ш. п + m ш.к = m ш

2) положение центра масс элемента реального КШМ и заме­щающего его в модели должно быть неизменным. Тогда m ш. п = m ш l ш.к /l ш и m ш.к = m ш l ш.п /l ш.

Выполнение этих двух условий обеспечивает статическую эк­вивалентность замещающей системы реальному КШМ;

3) условие динамической эквивалентности замещающей мо­дели обеспечивается при равенстве суммы моментов инерции масс, расположенных в характерных точках модели. Данное условие для двухмассовых моделей шатунов существующих двигателей обыч­но не выполняется, в расчетах им пренебрегают из-за его малых численных значений.

Окончательно объединив массы всех звеньев КШМ в замеща­ющих точках динамической модели КШМ, получим:

массу, сосредоточенную на оси пальца и совершающую возврат­но-поступательное движение вдоль оси цилиндра, m j = m п + m ш. п;

массу, расположенную на оси шатунной шейки и совершаю­щую вращательное движение вокруг оси коленчатого вала, m r = m к + m ш.к. Для V-образных ДВС с двумя шатунами, расположен­ными на одной шатунной шейке коленчатого вала, m r = m к + 2m ш.к.

В соответствии с принятой моделью КШМ первая замещаю­щая масса m j , движущаяся неравномерно с кинематическими па­раметрами поршня, вызывает силу инерции Р j = - m j j, а вторая масса m r , вращающаяся равномерно с угловой скоростью криво­шипа, создает центробежную силу инерции К r = К r ш + К к = - m r rω 2 .

Сила инерции Р j уравновешивается реакциями опор, на кото­рые установлен двигатель. Будучи переменной по значению и на­правлению, она, если не предусмотреть специальных мероприя­тий, может быть причиной внешней неуравновешенности двига­теля (см. рис. 8.3, б).

При анализе динамики и особенно уравновешенности двига­теля с учетом полученной ранее зависимости ускорения у от угла поворота кривошипа φ силу Р j представляют в виде суммы сил инерции первого (Р jI) и второго (Р jII) порядка:

где С = - m j rω 2 .

Центробежная сила инерции К r = - m r rω 2 от вращающихся масс КШМ представляет собой постоянный по величине вектор, на­правленный по радиусу кривошипа и вращающийся с постоянной угловой скоростью ω. Сила К r передается на опоры двигателя, вызывая переменные по величине реакции (см. рис. 8.3, в). Таким образом, сила К r , как и сила Р j , может являться причиной внешней неуравновешенности ДВС.

Суммарные силы и моменты, действующие в механизме. Силы Р г и Р j , имеющие общую точку приложения к системе и единую линию действия, при динамическом анализе КШМ заменяют суммарной силой, являющейся алгебраической суммой: Р Σ = Р г + Р j (рис. 8.5, а).

Рис. 8.5. Силы в КШМ: а - расчетная схема; б - зависимость сил в КШМ от угла поворота коленчатого вала

Для анализа действия силы Р Σ на элементы КШМ ее расклады­вают на две составляющие: S и N. Сила S действует вдоль оси шатуна и вызывает повторно-переменное сжатие-растяжение его элементов. Сила N перпендикулярна оси цилиндра и прижимает поршень к его зеркалу. Действие силы S на сопряжение шатун-кривошип можно оценить, перенеся ее вдоль оси шатуна в точку их шарнирного сочленения (S") и разложив на нормальную силу К, направленную по оси кривошипа, и тангенциальную силу Т.

Силы К и Т воздействуют на коренные опоры коленчатого вала. Для анализа их действия силы переносят в центр коренной опоры (силы К", Т" и Т"). Пара сил Т и Т" на плече r создает крутящий момент М к, который далее передается на маховик, где совершает полезную работу. Сумма сил К" и T" дает силу S", которая, в свою очередь, раскладывается на две составляющие: N" и .

Очевидно, что N" = - N и = Р Σ . Силы N и N" на плече h создают опрокиды­вающий момент М опр = Nh, который далее передается на опоры двигателя и уравновешивается их реакциями. М опр и вызываемые им реакции опор изменяются по времени и могут быть причиной внешней неуравновешенности двигателя.

Основные соотношения для рассмотренных сил и моментов имеют следующий вид:

На шатунную шейку кривошипа действуют сила S", направлен­ная по оси шатуна, и центробежная сила К r ш, действующая по радиусу кривошипа. Результирующая сила R ш.ш (рис. 8.5, б), нагру­жающая шатунную шейку, определяется как векторная сумма этих двух сил.

Коренные шейки кривошипа одноцилиндрового двигателя на­гружаются силой и центробежной силой инерции масс кривошипа . Их результирующая сила , дей­ствующая на кривошип, воспринимается двумя коренными опо­рами. Поэтому сила, действующая на каждую коренную шейку, равна половине результирующей силы и направлена в противо­положную сторону.

Использование противовесов приводит к изменению нагруженности коренной шейки.

Суммарный крутящий момент двигателя. В одноцилиндровом двигателе крутящий момент Так как r - величина посто­янная, то характер его изменения по углу поворота кривошипа полностью определяется изменением тангенциальной силы Т.

Представим многоцилиндровый двигатель как совокупность одноцилиндровых, рабочие процессы в которых протекают иден­тично, но сдвинуты друг относительно друга на угловые интерва­лы в соответствии с принятым порядком работы двигателя. Мо­мент, скручивающий коренные шейки, может быть определен как геометрическая сумма моментов, действующих на всех кривоши­пах, предшествующих данной шатунной шейке.

Рассмотрим в качестве примера формирование крутящих мо­ментов в четырехтактном (τ = 4) четырехцилиндровом (і= 4) ли­нейном двигателе с порядком работы цилиндров 1 -3 - 4 - 2 (рис. 8.6).

При равномерном чередовании вспышек угловой сдвиг между последовательными рабочими ходами составит θ = 720°/4 = 180°. тогда с учетом порядка работы угловой сдвиг мо­мента между первым и третьим цилиндрами составит 180°, между первым и четвертым - 360°, а между первым и вторым - 540°.

Как следует из приведенной схемы, момент, скручивающий і-ю коренную шейку определяется суммированием кривых сил Т (рис. 8.6, б), действующих на всех і-1 кривошипах, предшеству­ющих ей.

Момент, скручивающий последнюю коренную шейку, являет­ся суммарным крутящим моментом двигателя М Σ , который далее передается на трансмиссию. Он изменяется по углу поворота коленчатого вала.

Средний суммарный крутящий момент двигателя па угловом интервале рабочего цикла М к. ср соответствует индикаторному моменту М і , развиваемому двигателем. Это обусловлено тем, что положительную работу производят только газовые силы.

Рис. 8.6. Формирование суммарного крутящего момента четырехтактного четырехцилиндрового двигателя: а - расчетная схема; б - образование крутящего момента

Силы действующие на шейки коленчатого вала. К таким силам относятся: сила давления газов уравновешивается в самом двигателе и на его опоры не передается; сила инерции приложена к центру возвратнопоступательно движущихся масс и направлена вдоль оси цилиндра через подшипники коленчатого вала воздействуют на корпус двигателя вызывая его вибрацию на опорах в направлении оси цилиндра; центробежная сила от вращающихся масс направлена по кривошипу в средней его плоскости воздействуя через опоры коленчатого вала на корпус двигателя...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция 12

ДИНАМИКА КШМ

12.1. Силы давления газов

12.2. Силы инерции

12 .2.1. Приведение масс деталей КШМ

12.3. Суммарные силы, действующие в КШМ

12.3.1. Силы , действующие на шейки коленчатого вала

12.4. Порядок работы цилиндров двигателя в зависимости от расположения кривошипов и числа цилиндров

При работе двигателя в КШМ действуют силы и моменты, которые не только воздействуют на детали КШМ и другие узлы, но и вызывают неравномерность хода двигателя. К таким силам относятся:

  • сила давления газов уравновешивается в самом двигателе и на его опоры не передается;
  • сила инерции приложена к центру возвратно-поступательно движущихся масс и направлена вдоль оси цилиндра, через подшипники коленчатого вала воздействуют на корпус двигателя, вызывая его вибрацию на опорах в направлении оси цилиндра;
  • центробежная сила от вращающихся масс направлена по кривошипу в средней его плоскости, воздействуя через опоры коленчатого вала на корпус двигателя, вызывает колебания двигателя на опорах в направлении кривошипа.

Кроме того, возникают такие силы, как давление на поршень со стороны картера, и силы тяжести КШМ, которые не учитываются в виду их относительно малой величины.

Все действующие в двигателе силы взаимодействуют с сопротивлением на коленчатом валу, силами трения и воспринимаются опорами двигателя. В течение каждого рабочего цикла (720° — для четырехтактного и 360° для двухтактного двигателей) силы, действующие в КШМ, непрерывно меняются по величине и направлению и для установления характера изменения данных сил от угла поворота коленчатого вала их определяют через каждые 10—30° для определенных положений коленчатого вала.

12.1. Силы давления газов

Силы давления газов действуют на поршень, стенки и головку цилиндра. Для упрощения динамического расчета силы давления газов заменяются одной силой, направленной по оси цилиндра и прило женной к оси поршневого пальца.

Данную силу определяют для каждого момента времени (угла поворота коленчатого вала φ) по индикаторной диаграмме, полученной на основании теплового расчета или снятой непосредственно с двигателя с помощью специальной установки. На рис. 12.1 показаны развернутые индикаторные диаграммы сил, действующих в в частности изменение силы давления газов (Р г ) от величины угла поворота коленчатого вала.

Рис. 12.1. Развернутые индикаторные диаграммы сил,
действующих в КШМ

12.2. Силы инерции

Для определения сил инерции, действующих в КШМ, необходимо знать массы перемещающихся деталей. Для упрощения расчета массы движущихся деталей заменим системой условных масс, эквивалентных реально существующим массам. Такая замена называется приведением масс.

12.2.1. Приведение масс деталей КШМ

По характеру движения массы деталей КШМ можно разделить на три группы:

  • детали, движущиеся возвратно-поступательно (поршневая группа и верхняя головка шатуна);
  • детали, совершающие вращательное движение (коленчатый вал и нижняя головка шатуна);
  • детали, совершающие сложное плоско-параллельное движение (стержень шатуна).

Массу поршневой группы (т п ) считают сосредоточенной на оси поршневого пальца в точке А (рис. 12.2).

Рис. 12.2. Приведение масс шатуна

Массу шатунной группы заменяют двумя массами: т шп — сосредоточена на оси поршневого пальца в точке А, т шк — на оси кривошипа в точке В. Значения этих масс находят по формулам:

где L ш — длина шатуна;

L шк — расстояние от центра кривошипной головки до центра тяжести шатуна.

Для большинства существующих двигателей т шп находится в пределе от 0,2 т ш до 0,3 т ш , а т шк от 0,7 т ш до 0,8 т ш . Величина т ш может быть определена через конструктивную массу (табл. 12.1), полученную на основании статистических данных.

Массу кривошипа заменяют двумя массами, сосредоточенными на оси кривошипа в точке В (т к ) и на оси коренной шейки в точке О (т о ) (рис. 12.3).

Рис. 12.3. Приведение масс кривошипа: а — реальная; б — эквивалентная

Масса коренной шейки с частью щек, расположенных симметрично относительно оси вращения, является уравновешенной. Неуравновешенные массы кривошипа заменяют одной приведенной массой с соблюдением условия равенства центробежной силы инерции действительной массы центробежной силе приведенной массы. Эквивалентную массу приводят к радиусу кривошипа R и обозначают т к .

Массу шатунной шейки т шш с прилежащими частями щек принимают сосредоточенной посередине оси шейки, и так как центр тяжести ее удален от оси вала на расстояние равное R , приведение этой массы не требуется. Массу щеки т ш с центром тяжести на расстоянии р от оси коленчатого вала заменяют приведенной массой расположенной на расстоянии R от оси коленчатого вала. Приведенная масса всего кривошипа определяется суммой приведенных масс шатунной шейки и щек:

При проектировании двигателей величина т к может быть получена через конструктивные массы кривошипа т " к (см. табл. 12.1). У современных короткоходных двигателей величина т ш мала по сравнению с т шш и ею можно пренебречь.

Таблица 12.1. Значения конструктивных масс КШМ, кг/м 2

Элемент КШМ

Карбюраторные двигатели с D от 60 до 100 мм

Дизели с D от 80 до 120 мм

Поршневая группа (т" п = т ш / F п )

Поршень из алюминиевого сплава

80-50

150-300

Чугунный поршень

150-250

250-400

Шатун (т " к = т ш / F п )

Шатун

100-200

250-400

Неуравновешенные части одного колена коленчатого вала без противовесов (т " к = т к / F п )

Стальной кованый коленчатый вал со сплошными шейками

150-200

200-400

Чугунный литой коленчатый вал с полыми шейками

100-200

150-300

Примечания.

1. При использовании табл. 12.1 следует учитывать, что большие значения т " соответствуют двигателям с большим диаметром цилиндра.

2. Уменьшение S/D снижает т" ш и т" к .

3. V-образным двигателям с двумя шатунами на шейке соответствуют большие значения т" к .

Таким образом, система сосредоточенных масс, динамически эквивалентная КШМ, состоит из массы т А , сосредоточенной в точке А и совершающей возвратно-поступательное движение:

и массы т В , сосредоточенной в точке В и имеющей вращательное движение:

В V -образных двигателях со сдвоенным КШМ т В = т к + 2т шк .

При динамическом расчете двигателя значения т п и т ш определяют по данным прототипов или рассчитывают. Значения же т шш и т ш определяют исходя из размеров кривошипа и плотности материала коленчатого вала. Для приближенного определения значения т п , т ш и т к можно использовать конструктивные массы:

где .

12.2.2. Определение сил инерции

Силы инерции, действующие в КШМ, в соответствии с характером движения приведенных масс, делятся на силы инерции поступательно движущихся масс P j и центробежные силы инерции вращающихся масс Р ц .

Сила инерции от возвратно-поступательно движущихся масс может быть определена по формуле

(12.1)

Знак минус указывает на то, что сила инерции направлена в сторону противоположную ускорению. Ее можно рассматривать, как состоящую из двух сил (аналогично ускорению).

Первая составляющая

(12.2)

  • сила инерции первого порядка.

Вторая составляющая

(12.3)

  • сила инерции второго порядка.

Таким образом,

Центробежная сила инерции вращающихся масс постоянна по величине и направлена от оси коленчатого вала. Ее величина определяется по формуле

(12.4)

Полное представление о нагрузках, действующих в деталях КШМ, может быть получено лишь в результате совокупности действия различных сил, возникающих при работе двигателя.

12.3. Суммарные силы, действующие в КШМ

Рассмотрим работу одноцилиндрового двигателя. Силы, действую щие в одноцилиндровом двигателе, показаны на рис. 12.4. В КШМ действуют сила давления газов Р г , сила инерции возвратно-поступа тельно движущихся масс P j и центробежная сила Р ц . Силы Р г и P j приложены к поршню и действуют по его оси. Сложив эти две силы, получим суммарную силу, действующую по оси цилиндра:

(12.5)

Перемещенная сила Р в центр поршневого пальца раскладывается на две составляющие:

(12. 6 )

  • сила, направленная по оси шатуна;

(12. 7 )

  • сила, перпендикулярная стенке цилиндра.

Рис. 12.4. Силы, действующие в КШМ одноцилиндрового двигателя

Сила P N воспринимается боковой поверхностью стенки цилиндра и обусловливает износ поршня и цилиндра. Она считается положительной, если создаваемый ею момент относительно оси коленчатого вала направлен противоположно направлению вращения вала двигателя.

Сила Р ш считается положительной, если сжимает шатун, и отрицательной, если растягивает его.

Сила Р ш , приложенная к шатунной шейке (Р " ш ), раскладывается на две составляющие:

(12.8)

  • тангенциальную силу, касательную к окружности радиуса кривошипа;

(12.9)

  • нормальную силу (радиальную), направленную по радиусу кривошипа.

Сила Z считается положительной, если она сжимает щеки кривошипа. Сила Т считается положительной, если направление создаваемого ею момента совпадает с направлением вращения коленчатого вала.

По величине Т определяют индикаторный крутящий момент одного цилиндра:

(12.10)

Нормальная и тангенциальная силы, перенесенные в центр коленчатого вала (Z " и Т "), образуют равнодействующую силу Р"" ш , которая параллельна и равна по величине силе Р ш . Сила Р"" ш нагружает коренные подшипники коленчатого вала. В свою очередь силу Р"" ш можно разложить на две составляющие: силу P " N , перпендикулярную к оси цилиндра, и силу Р", действующую по оси цилиндра. Силы P " N и P N образуют пару сил, момент которой называется опрокидывающим. Его величина определяется по формуле

(12.11)

Данный момент равен индикаторному крутящему моменту и направлен в противоположную ему сторону:

Так как , то

(12.12)

Крутящий момент передается через трансмиссию ведущим колесам, а опрокидывающий момент воспринимается опорами двигателя. Сила Р " равна силе Р , и аналогично последней ее можно представить как

Составляющая P " г уравновешивается силой давления газов, приложенной к головке цилиндра, a P " j является свободной неуравновешенной силой, передающейся на опоры двигателя.

Центробежная сила инерции прикладывается к шатунной шейке кривошипа и направлена в сторону от оси коленчатого вала. Она так же как и сила P " j является неуравновешенной и передается через коренные подшипники на опоры двигателя.

12.3.1. Силы, действующие на шейки коленчатого вала

На шатунную шейку действуют радиальная сила Z , тангенциальная сила Т и центробежная сила Р ц от вращающейся массы шатуна. Силы Z и Р ц направлены по одной прямой, поэтому их равнодействующая

или

(12.13)

Здесь Р ц определяется не как , а как , поскольку речь идет о центробежной силе только шатуна, а не всего кривошипа.

Равнодействующая всех сил, действующих на шатунную шейку, рассчитывается по формуле

(12.14)

Действие силы R ш вызывает износ шатунной шейки. Результирующую силу, приложенную к коренной шейки коленчатого вала, находят графическим способом, как силы, передающиеся от двух смежных колен.

12.3.2. Аналитическое и графическое представление сил и моментов

Аналитическое представление сил и моментов, действующих в КШМ, представлено формулами (12.1)—(12.14).

Нагляднее изменение сил, действующих в КШМ в зависимости от угла поворота коленчатого вала, можно представить в качестве развернутых диаграмм, которые используются для расчета деталей КШМ на прочность, оценки износа трущихся поверхностей деталей, анализа равномерности хода и определения суммарного крутящего момента многоцилиндровых двигателей, а также построения полярных диаграмм нагрузок на шейку вала и его подшипники.

Обычно при расчетах строятся две развернутые диаграммы: на одной изображаются зависимости , и (см. рис. 12.1), на другой — зависимости и (рис. 12.5).

Рис. 12.5. Развернутые диаграммы тангенциальной и реальной сил, действующих в КШМ

Развернутые диаграммы, действующих в КШМ сил, дают возможность сравнительно простым способом определять крутящий момент многоцилиндровых двигателей.

Из уравнения (12.10) следует, что крутящий момент одноцилиндрового двигателя можно выразить как функцию Т=f (φ). Значение силы Т в зависимости от изменения угла поворота значительно изменяется, как видно на рис. 12.5. Очевидно, что и крутящий момент будет изменяться аналогично.

В многоцилиндровых двигателях переменные крутящие моменты отдельных цилиндров суммируются по длине коленчатого вала, в результате чего на конце вала действует суммарный крутящий момент. Значения этого момента можно определить графически. Для этого проекцию кривой Т=f (φ) на оси абсцисс разбивают на равные отрезки (число отрезков равняется числу цилиндров). Каждый отрезок делят на несколько равных частей (здесь на 8). Для каждой полученной точки абсциссы определяют алгебраическую сумму ординат двух кривых (над абсциссой значения со знаком «+», ниже абсциссы значения со знаком «-»). Полученные значения откладывают соответственно в координатах х, у и полученные точки соединяют кривой (рис. 12.6). Эта кривая и является кривой результирующего крутящего момента за один рабочий цикл двигателя.

Рис. 12.6. Развернутая диаграмма результирующего крутящего момента
за один рабочий цикл двигателя

Для определения среднего значения крутящего момента подсчитывается площадь F , ограниченная кривой крутящего момента и осью ординат (выше оси значение положительное, ниже — отрицательное):

где L — длина диаграммы по оси абсцисс; м М — масштаб.

При известном масштабе тангенциальной силы м Т найдем масштаб крутящего момента м М = м Т R , R — радиус кривошипа.

Так как при определении крутящего момента не учитывались потери внутри двигателя, то, выражая эффективный крутящий момент через индикаторный, получим

где М к — эффективный крутящий момент; η м — механический КПД двигателя.

12.4. Порядок работы цилиндров двигателя в зависимости от расположения кривошипов и числа цилиндров

В многоцилиндровом двигателе расположение кривошипов коленчатого вала должно, во-первых, обеспечивать равномерность хода двигателя, и, во-вторых, обеспечить взаимную уравновешенность сил инерции вращающихся масс и возвратно-поступательно движущихся масс.

Для обеспечения равномерности хода необходимо создать условия для чередования в цилиндрах вспышек через равные интервалы угла поворота коленчатого вала. Поэтому для однорядного двигателя угол ф, соответствующий угловому интервалу между вспышками при четырехтактном цикле рассчитывается по формуле φ = 720°/ i , где i — число цилиндров, а при двухтактном по формуле φ = 360°/ i .

На равномерность чередования вспышек в цилиндрах многорядного двигателя, кроме угла между кривошипами коленчатого вала, влияет и угол γ между рядами цилиндров. Для получения оптимальной равномерности хода n -рядного двигателя этот угол должен быть в n раз меньше угла между кривошипами коленчатого вала, т. е.

Тогда угловой интервал между вспышками для четырехтактного двигателя

Для двухтактного

Для удовлетворения требования уравновешенности необходимо, чтобы число цилиндров в одном ряду и соответственно число кривошипов коленчатого вала было четным, причем кривошипы должны быть расположены симметрично относительно середины коленчатого вала. Симметричное относительно середины коленчатого вала расположение кривошипов называется «зеркальным». При выборе формы коленчатого вала, кроме уравновешенности двигателя и равномерности его хода, учитывают также порядок работы цилиндров.

Оптимальный порядок работы цилиндров, когда очередной рабочий ход происходит в цилиндре, наиболее удаленном от предыдущего, позволяет снизить нагрузки на коренные подшипники коленчатого вала и улучшить охлаждение двигателя.

На рис. 12.7 приведены последовательности работ цилиндров однорядных (а ) и V -образных (б ) четырехтактных двигателей.

Рис. 12.7. Последовательность работ цилиндров четырехтактных двигателй:

а — однорядных; б — V -образных

PAGE \* MERGEFORMAT 1

Другие похожие работы, которые могут вас заинтересовать.вшм>

10783. Динамика конфликта 16.23 KB
Динамика конфликта Вопрос 1. Общее представление о динамике конфликта предконфликтная ситуация Всякий конфликт может быть представлен тремя этапами: 1 начало 2 развитие 3 завершение. Таким образом общая схема динамики конфликта складывается из следующих периодов: 1 Предконфликтная ситуация латентный период; 2 Открытый конфликт собственно конфликт: инцидент начало конфликта эскалация развитие конфликта завершение конфликта; 3 Послеконфликтный период. Предконфликтная ситуация это возможность конфликта...
15485. Динамика асослари 157.05 KB
Моддий нуқта динамикасининг биринчи асосий масаласини ечиш 5. Моддий нуқта динамиканинг иккинчи асосий масаласини ечиш 6. Динамикада моддий нуқта моддий нуқталар системаси ва абсолют жисмнинг ҳаракати шу ҳаракатни вужудга келтирувчи кучлар билан биргаликда ўрганилади. Динамикада дастлаб моддий нуқтанинг ҳаракати ўрганилади.
10816. Динамика популяций 252.45 KB
Динамика популяции – одно из наиболее значимых биологических и экологических явлений. Образно говоря жизнь популяции проявляется в ее динамике. Модели динамики и роста популяции.
1946. Динамика механизмов 374.46 KB
Задачи динамики: Прямая задача динамики силовой анализ механизма – по за данному закону движения определить действующие на его звенья силы а также реакции в кинематических парах механизма. К механизму машинного агрегата во время его движения приложены различные силы. Это движущие силы силы сопротивления иногда их называют силами полезного сопротивления силы тяжести силы трения и многие другие силы. Своим действием приложенные силы сообщают механизму тот или иной закон движения.
4683. ДИНАМИКА НАУЧНОГО ЗНАНИЯ 14.29 KB
Важнейшей особенностью научного знания является его динамика – изменение и развитие формальных и содержательных характеристик в зависимости от временных и социокультурных условий производства и воспроизводства новой научной информации.
1677. Лидерство и групповая динамика 66.76 KB
Целью данной работы является выявление потенциальных лидеров в ученическом коллективе а также: Основные темы в исследовании лидерства; Взаимодействие лидер и группы; Функции лидера Теоретические подходы к лидерству различных исследователей. Данная работа состоит из двух глав: первая глава – теоретическая часть обзор основных тем в исследовании лидерства взаимоотношения лидера и группы функции лидера и теоретические подходы к лидерству вторая глава – экспериментальное исследование одной таблицы шести диаграмм и двух...
6321. ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ 108.73 KB
Сила действующая на частицу в системе совпадает с силой действующей на частицу в системе. Это следует из того что сила зависит от расстояний между данной частицей и действующими на нее частицами и возможно от относительных скоростей частиц а эти расстояния и скорости полагаются в ньютоновской механике одинаковыми во всех инерциальных системах отсчета. В рамках классической механики имеют дело с гравитационными и электромагнитными силами а также с упругими силами и силами трения. Гравитационные и...
4744. СТРУКТУРА И ДИНАМИКА ОБЩЕСТВА КАК СИСТЕМЫ 22.85 KB
Общество – это исторически развивающаяся целостная система отношений и взаимодействий между людьми, их общностями и организациями, складывающаяся и изменяющаяся в процессе их совместной деятельности.
21066. ДИНАМИКА РАЗВИТИЯ ЗООПЛАНКТОНА В НОВОРОССИЙСКОЙ БУХТЕ 505.36 KB
Новороссийская бухта – наиболее крупная бухта Северо-Восточной части Черного моря. Вместе с прилегающей к ней открытой акваторией она долгие годы являлась одним из важных рыбопромысловых и нерестовых районов Российского сектора Черного моря. Особенности географического положения, большие глубины и площадь, достаточный водообмен с открытым морем, хорошая кормовая база – все эти факторы способствовали массовым заходам в бухту различных видов рыб для размножения и нагула
16846. Современная финансово-экономическая динамика и политэкономия 12.11 KB
Основным противоречием современной финансово-экономической системы является противоречие между производством реальной стоимости и движением ее денежных и финансовых форм. превращения стоимости воплощенной в разнообразных ресурсах в источник получения прибавочной стоимости заключенной в произведенных благах. Увеличение капитализации создает дополнительный спрос на деньги для обслуживания возрастающего оборота стоимости что приводит к росту монетизации экономики которая в свою очередь создает дополнительные возможности капитализации...

Кривошипно-шатунный механизм (KШM) является основным механизмом поршневого ДВС, который воспринимает и передает значительные по величине нагрузки. Поэтому расчет прочности KШM имеет важное значение. В свою очередь расчеты многих деталей двигателя зависят от кинематики и динамики КШМ. Кинематический анализ КШМ устанавливает законы движения его звеньев, в первую очередь поршня и шатуна.

11.1. Типы КШМ

В поршневых ДВС применяются три типа КШМ:

центральный (аксиальный);

смешанный (дезаксиальный);

с прицепным шатуном.

В центральном КШМ ось цилиндра пересекается с осью коленчатого вала (рис. 11.1).

Рис. 11.1. Схема центрального КШМ: φ - текущий угол поворота коленчатого вала; β - угол отклонения оси шатуна от оси цилиндра (при отклонении шатуна в направлении вращения кривошипа угол β считается положительным, в противоположном направлении - отрицательным); S - ход поршня;
R - радиус кривошипа; L - длина шатуна; х - перемещение поршня;

ω - угловая скорость коленчатого вала

Угловая скорость рассчитывается по формуле

Важным конструктивным параметром КШМ является отношение радиуса кривошипа к длине шатуна:

Установлено, что с уменьшением λ (за счет увеличения L) происходит снижение инерционных и нормальных сил. При этом увеличивается высота двигателя и его масса, поэтому в автомобильных двигателях принимают λ от 0,23 до 0,3.

Значения λ для некоторых автомобильных и тракторных двигателей приведены в табл. 11.1.

Таблица 11.1. Значения параметра λ для различных двигателей

В дезаксиальном КШМ (рис. 11.2) ось цилиндра не пересекает ось коленчатого вала и смещена относительно ее на расстояние а .

Рис. 11.2. Схема дезаксиального КШМ

Дезаксиальные КШМ имеют относительно центральных КШМ некоторые преимущества:

увеличенное расстояние между коленчатым и распределительным валами, в результате чего увеличи­вается пространство для перемещения нижней головки шатуна;

более равномерный износ цилиндров двигателя;

при одинаковых значениях R и λ больше ход поршня, что способствует снижению содержания токсичных веществ в отработавших газах двигателя;

увеличенный рабочий объем двигателя.

На рис. 11.3 показан КШМ с прицепным шатуном. Шатун, который шарнирно соединен непосредственно с шейкой коленчатого вала, называется главным, а шатун, который соединен с главным посредством пальца, расположенного на его головке, называется прицепным. Такая схема КШМ применяется на двигателях с большим числом цилиндров, когда хотят уменьшить длину двигателя. Поршни, соединенные с главным и прицепным шатуном имеют не одинаковый ход, так как ось кривошипной головки прицепного шатуна при работе описывает эллипс, большая полуось которого больше радиуса кривошипа. В V-образном двенадцатицилиндровом двигателе Д-12 разница в ходе поршней составляет 6,7 мм.

Рис. 11.3. КШМ с прицепным шатуном: 1 - поршень; 2 - компрессионное кольцо; 3 - поршневой палец; 4 - заглушка поршневого пальца; 5 - втулка верхней головки шатуна; 6 - главный шатун; 7 - прицепной шатун; 8 - втулка нижней головки прицепного шатуна; 9 - палец крепления прицепного шатуна; 10 - установочный штифт; 11 - вкладыши; 12- конический штифт

11.2. Кинематика центрального КШМ

При кинематическом анализе КШМ считается, что угловая скорость коленчатого вала постоянна. В задачу кинематического расчета входит определение перемещения поршня, скорости его движения и ускорения.

11.2.1. Перемещение поршня

Перемещение поршня в зависимости от угла поворота кривошипа для двигателя с центральным КШМ рассчитывается по формуле

Анализ уравнения (11.1) показывает, что перемещение поршня можно представить как сумму двух перемещений:

x 1 - перемещение первого порядка, соответствует перемещению поршня при бесконечно длинном шатуне (L = ∞ при λ = 0):

х 2 - перемещение второго порядка, представляет собой поправку на конечную длину шатуна:

Величина х 2 зависит от λ. При заданном λ экстремальные значения х 2 будут иметь место, если

т. е. в пределах одного оборота экстремальные значения х 2 будут соответствовать углам поворота (φ) 0; 90; 180 и 270°.

Максимальных значений перемещение достигнет при φ = 90° и φ = 270°, т. е. когда соs φ = -1. В этих случаях действительное перемещение поршня составит

Величина λR/2, называется поправкой Брикса и является поправкой на конечную длину шатуна.

На рис. 11.4 показана зависимость перемещения поршня от угла поворота коленчатого вала. При повороте кривошипа на 90° поршень проходит больше половины своего хода. Это объясняется тем, что при повороте кривошипа от ВМТ до НМТ поршень движется под действием перемещения шатуна вдоль оси цилиндра и отклонения его от этой оси. В первой четверти окружности (от 0 до 90°) шатун одновременно с перемещением к коленчатому валу отклоняется от оси цилиндра, причем оба перемещения шатуна соответствуют движению поршня в одном направлении, и поршень проходит больше половины своего пути. При движении кривошипа во второй четверти окружности (от 90 до 180°) направления движений шатуна и поршня не совпадают, поршень проходит наименьший путь.

Рис. 11.4. Зависимость перемещения поршня и его составляющих от угла поворота коленчатого вала

Перемещение поршня для каждого из углов поворота может быть определено графическим путем, которое получило название метод Брикса. Для этого из центра окружности радиусом R=S/2 откладывается в сторону НМТ поправка Брикса, находится новый центр О 1 . Из центра О 1 через определенные значения φ (например, через каждые 30°) проводят радиус-вектор до пересечения с окружностью. Проекции точек пересечения на ось цилиндра (линия ВМТ-НМТ) дают искомые положения поршня при данных значениях угла φ. Использование современных автоматизированных вычислительных средств позволяет быстро получить зависимость x =f (φ).

11.2.2. Скорость поршня

Производная перемещения поршня - уравнение (11.1) по времени вращения дает скорость перемещения поршня:

Аналогично перемещению поршня скорость поршня может быть представлена также в виде двух составляющих:

где V 1 – составляющая скорости поршня первого порядка:

V 2 - составляющая скорости поршня второго порядка:

Составляющая V 2 представляет собой скорость поршня при бесконечно длинном шатуне. Составляющая V 2 является поправкой к скорости поршня на конечную длину шатуна. Зависимость изменения скорости поршня от угла поворота коленчатого вала показана на рис. 11.5.

Рис. 11.5. Зависимость скорости поршня от угла поворота коленчатого вала

Максимальные значения скорость достигает при углах поворота коленчатого вала меньше 90 и больше 270°. Точное значение этих углов зависит от величин λ. Для λ от 0,2 до 0,3 максимальные скорости поршня соответствуют углам поворота коленчатого вала от 70 до 80° и от 280 до 287°.

Средняя скорость поршня рассчитывается следующим образом:

Средняя скорость поршня в автомобильных двигателях обычно находится в пределе от 8 и до 15 м/с. Значение максимальной скорости поршня с достаточной точностью может быть определено как

11.2.3. Ускорение поршня

Ускорение поршня определяется как первая производная скорости по времени или как вторая производная перемещения поршня по времени:

где и - гармонические составляющие первого и второго порядка ускорения поршня соответственно j 1 и j 2 . При этом первая составляющая выражает ускорение поршня при бесконечно длинном шатуне, а вторая составляющая - поправку ускорения на конечную длину шатуна.

Зависимости изменения ускорения поршня и его составляющих от угла поворота коленчатого вала показаны на рис. 11.6.

Рис. 11.6. Зависимости изменения ускорения поршня и его составляющих
от угла поворота коленчатого вала

Ускорение достигает максимальных значений при положении поршня в ВМТ, а минимальных - в НМТ или около НМТ. Эти изменения кривой j на участке от 180 до ±45° зависят от величины λ. При λ > 0,25 кривая j имеет вогнутую форму в сторону оси φ (седло), и ускорение достигает минимальных значений дважды. При λ = 0,25 кривая ускорения выпуклая, и ускорение достигает наибольшего отрицательного значения только один раз. Максимальные ускорения поршня в автомобильных ДВС 10 000 м/с 2 . Кинематика дезаксиального КШМ и КШМ с прицепным шатуном несколько отличается от кинематики центрального КШМ и в настоящем издании не рассматривается.

11.3. Отношение хода поршня к диаметру цилиндра

Отношение хода поршня S к диаметру цилиндра D является одним из основных параметров, который определяет размеры и массу двигателя. В автомобильных двигателях значения S/D от 0,8 до 1,2. Двигатели с S/D > 1 называются длинноходными, а с S/D < 1 - короткоходными. Данное отношение непосредственно влияет на скорость поршня, а значит и мощность двигателя. С уменьшением значения S/D очевидны следующие преимущества:

уменьшается высота двигателя;

за счет уменьшения средней скорости поршня снижаются ме­ханические потери и уменьшается износ деталей;

улучшаются условия размещения клапанов и создаются пред­посылки для увеличения их размеров;

появляется возможность увеличения диаметра коренных и шатунных шеек, что повышает жесткость коленчатого вала.

Однако есть и отрицательные моменты:

увеличивается длина двигателя и длина коленчатого вала;

повышаются нагрузки на детали от сил давления газа и от сил инерции;

уменьшается высота камеры сгорания и ухудшается ее форма, что в карбюраторных двигателях приводит к повышению склонности к детонации, а в дизелях - к ухудшению условий смесеобразования.

Целесообразным считается уменьшение значения S/D при повышении быстроходности двигателя. Особенно это выгодно для V-образных двигателей, где увеличение короткоходности позволяет получить оптимальные массовые и габаритные показатели.

Значения S/D для различных двигателей:

Карбюраторные двигатели - 0,7-1;

Дизели средней быстроходности - 1,0-1,4;

Быстроходные дизели - 0,75-1,05.

При выборе значений S/D следует учитывать, что силы, действующие в КШМ, в большей степени зависят от диаметра цилиндра и в меньшей - от хода поршня.

© 2024 aytodor.ru -- Портал для автомобилистов