Влияние электроэнергетики на окружающую среду. Виды источников энергии и их влияние на окружающую среду Как влияет энергетика на окружающую среду

Главная / Гибдд

Любая деятельность человека, требующая произ­водства энергии и ее превращения в форму, пригодную для конеч­ного использования в жилищах, на предприятиях или в средствах транспорта, оказывает побочные влияния, которые при достижении определенного уровня наносят ущерб одному или нескольким аспектам окружающей среды. Это, конечно, так, но справедливо также и то, что человек может регулировать уровень побочных влияний. Такие влияния, прежде всего, возникают на тепловых элек­трических станциях, преобразующих энергию различных видов органического топлива в электрическую. Здесь необходимо найти пути уменьшения вредных выбросов в атмосферу газов и твердых частиц и уменьшения теплового загрязнения воды в реках и озерах.

Гидроэлектростанции долгое время считались чистыми и безвредными предприятиями, однако затем они стали подвергаться справедливой критике из-за затопления обширных территорий, необходимости переносить населенные пункты. Создание искусствен­ных водоемов приводит к резкому изменению экологии района, из­менению давления на сушу и уровней грунтовых вод, что отрица­тельно сказывается на близрасположенной флоре и фауне. Замед­ление течения рек из-за сооружения плотин электростанций ведет к загрязнению воды, появлению вредных сине-зеленых водорослей, способствует размножению бактерий, несущих эпидемии, наруше­нию половодий и исчезновению вследствие этого заливных лугов, в некоторых случаях происходит засоление почвы (например, вбли­зи Астрахани).

Рис. 1. Загрязнение атмосферы электростанциями различного типа

Объемы загрязнений тепловыми электростанциями окружающей среды и вид загрязнений зависят от типа и мощности станций. На рис. 1 приведены показатели загрязнений окружающей среды станциями различного типа мощностью по 1 ГВт каждая. Выбросы в атмосферу газов и золы даны на рисунке в тоннах в сутки, а ак­тивность радиоактивных элементов в секундах в минус первой сте­пени. Станции, работающие на угле, потребляют его в больших количествах и больше всего выбрасывают загрязняющих атмосфе­ру веществ. Выбросы в атмосферу зависят откачества угля. При­веденные на рисунке характеристики соответствуют углю средней калорийности.

Атомные электростанции, долгое время бывшие объектами тща­тельных наблюдений, практически не оказывают вредного влияния на биосферу при условии, что решается проблема безопасного сохранения радиоактивных отходов.Относящийся к ним знак во­проса на рис. 1 расшифровывается в зависимости от решений, проблемы радиоактивных отходов. Английские атомные станции сбрасывали радиоактивные отходы в Северное море, что, конечно, недопустимо и осуждалось мировой общественностью. Иногда ра­диоактивные отходы в специальных контейнерах опускаются на дно морей и океанов. В этом случае, однако, не исключается полно­стью опасность заражения воды. Поэтому выбросы радиоактивных отходов в моря и океаны вызывают резкие протесты со стороны стран, расположенных на побережье.



В порядке курьеза можно вспомнить, что в прошлом, когда появились первые ядерные реакторы, некоторые специалисты в США предлагали сбрасывать радиоактивные отходы на дно Чер­ного моря. Выбор пал на Черное море, поскольку в нем наиболее медленно происходит циркуляция воды между верхними и нижними слоями. Нижние слои достигают поверхности примерно за 100 лет. Совершенно ясно, что такое предложение не могло считаться удовлетворительным и было категорически отклонено. В действительно­сти достаточно безопасно можно хранить радиоактивные отходы под землей в жидком состоянии в специальных резервуарах или предварительно зацементированными. При цементировании дости­гаются две цели: улучшается защита отходов и уменьшается их объем.

Перспективно так называемое «отвердение» жидких радиоак­тивных отходов путем их нагрева и выпаривания. При существую­щей технологии 1000 л жидких отходов с высоким уровнем радио­активности можно переработать в менее чем 0,01 м 3 твердых отхо­дов. Твердые отходы помещаются в герметические металлические контейнеры. Такие контейнеры удобно хранить в соляных шахтах глубоко под землей, так как в мощные соляные пласты не прони­кают грунтовые воды и вследствие их пластичности уменьшается опасность появления трещин и разрывов во время землетрясений. Доля электроэнергии, вырабатываемой на атомных электростан­циях, с течением времени будет возрастать по мере увеличения их единичных мощностей. Зависимости удельных расходов на выра­ботку 1 кВт·ч электроэнергии (з ) от мощности (Р) тепловых и атомных станций приведены на рис.2.



Начиная примерно с 1000 МВт, а по послед­ним данным даже с мень­ших мощностей, оказы­вается экономически вы­годнее строить и эксплуа­тировать именно атомные электростанции, а не теп­ловые. Развитие всех электрических станций идет по пути увеличений мощностей единичных агрегатов, и поэтому в относи­тельно недалекой перспек­тиве следует ожидать широ­кого применения атомных станций. При достаточно больших мощностях они экономически значительно более выгодны. Увеличение мощностей агрегатов стан­ций, непрерывное совершен­ствование конструкций при­водят к относительному уменьшению необходимых площадей s и объемов v, приходящихся на 1 кВт установленной мощности (рис. 3). Резкое уменьшение объемов, требуемых для энергоустановок в 70-е годы (штриховая линия), происходит за счет использования закрытых конструкций, заполненных электроизолирующим газом, в которые помещают электрооборудование и в которых может быть сущест­венно уменьшено расстояние между токоведущими частями.

Рис. 2. Экономические показатели работы АЭС и ТЭС

Более крупные станции обладают лучшими техническими харак­теристиками, они в большей степени поддаются автоматизации и механизации процессов, что позволяет существенно повышать мощ­ности Р, приходящиеся на одного человека обслуживающего персо­нала. Все это, в конечном счете, облегчает решение проблемы со­кращения расходования обжитой территории.

В настоящее время уменьшение вредного влияния различных технических устройств, в том числе и энергетических, приобрело решающее значение при установлении их характеристик. Большие возможности уменьшения вредного влияния энергетики на биосферу безусловно заключаются в использовании электростанций, работающих на ядерном горючем. Этот путь уже сейчас весьма эффективен и будет еще более эффективен, когда в отдаленном будущем появится возможность использовать для целей энергетики управляемую реакцию термоядерного синтеза.

Уже сейчас к атомным электростанциям предъявляют весьма высокие требования в отношении надежности, так как аварийные нарушения в их работе могут сопровождаться интенсивным зара­жением окружающей местности. Так, при аварии на одной из анг­лийских атомных станций произошло заражение травы и близ рас­положенной местности, Из-за чего молоко в течение нескольких месяцев было непригодно к употреблению.

В отношении безопасности работы атомных станций имеются весьма пессимистические высказывания ряда зарубежных ученых. Американский ученый Брэнд Барнаби считает, что развитие ядер­ной энергии создает потенциальную угрозу для жизни всего чело­вечества, так как каждая атомная станция производит радиоак­тивный стронций в таком количестве, которого достаточно, чтобы все человечество получило дозу облучения, превышающую мак­симально допустимый уровень. Один инцидент на атомной станции равносилен бесчисленному множеству природных ка­тастроф.

Рис. 3. Изменение во времени характе­ристик энергоустановок

Под давлением со стороны общественных кругов США в некото­рых штатах создаются затруднения в выделении площадей под атомные станции - их намечают сооружать на баржах в океане.

Советские специалисты считают, что атомные электростанции при надлежащей их конструкции безопасны и не загрязняют окру­жающую среду. В нашей стране не разрешается выбрасывать ра­диоактивные отходы в атмосферу, моря и океаны. Радиоактивные отходы проходят обработку в очистительных сооружениях, где уро­вень радиации снижается до допустимых санитарными нормами величин, а затем подвергаются цементированию и укладыванию в специальные железобетонные сооружения.

Атомная энергетика в нашей стране развивается большими тем­пами, причем одновременно создаются эффективные средства защи­ты и повышается надежность станций. Атомные станции сооружа­ются в Советском Союзе во многих местах, в том числе и вблизи таких крупных городов, как Ленинград, Ереван и др. Существую­щая надежность их работы такова, что практически исключается опасность для жизни и здоровья людей.

Загрязнения окружающей среды почти не происходит при выра­ботке электроэнергии на станциях, использующих геотермическую энергию, энергию солнечной радиации, а также энергию ветра и приливов.

Таким образом, среди всех видов электрических станций тепло­вые станции, работающие на органическом топливе, более всего загрязняют атмосферу. В ряде стран современная техническая политика снижения загрязнений, в том числе наибольшего рассеи­вания выбросов на тепловых станциях, последовала после принятия специальных законодательных мер в отношении допустимого уров­ня загрязнения. Проблема газоочистки приобретает особую акту­альность и на ее решение расходуются значительные средства. Например, общие затраты за последние 5-6 лет в США на иссле­довательские работы по очистке дымовых газов составили 100 млн. долл. В настоящее время трудно точно оценить затраты на очисти­тельные сооружения. По предварительным прогнозам, при исполь­зовании современных технологических систем газоочистки они составят 30-70 долл./кВт. Так, например, для энергетического блока мощностью 550 МВт на ТЭС «Widow’s Creeck» стоимостью 65 млн. долл. запроектирована газоочистительная установка стои­мостью 35 млн. долл. Иными словами, расходы по уменьшению вы­бросов вредных веществ в атмосферу составляют более 50 % от стоимости энергоблока.

Современные газоочистительные установки позволяют в значи­тельной мере ограничить выброс. вредных веществ в атмосферу (рис. 4).

В случае, приведенном на рис. 4, а, отсутствуют газоочисти­тельные сооружения и применяется низкокачественное топливо. Ис­пользование природного газа для топок, а также установка очисти­тельных сооружений позволяют добиться больших успехов в оздо­ровлении окружающей среды (рис. 2.8, б) .

Рис. 4. Уменьшение загрязнения воздуха с помощью очи­стительных сооружений: а и б - до и после включения очистительных сооружений соответ­ственно

В связи е большими расходами на очистительные сооружения остро возникает вопрос об источниках финансирования. По мнению ряда зарубежных специалистов из капиталистических стран, реше­ние вопроса заключается в повышении цен на первичные энергоре­сурсы (нефть, уголь, газ).

Уменьшения загрязнения атмосферы намечается достичь также за счет ограничения в энергопотреблении, которое станет возмож­ным при увеличении эффективности использования энергии. Так, предполагается, что улучшение теплоизоляции жилых, производст­венных и прочих сооружении позволит примерно в два раза сокра­тить расходы на отопление и кондиционирование воздуха.

Помимо загрязнения атмосферы в ряде стран нормируется теп­ловое загрязнение электростанциями водоемов, что вызывает не­обходимость в дополнительных расходах на охлаждение воды.

Сбросы горячей воды в водоемы ио повышение вследствие этого их температуры приводят к нарушению экологического равновесия, установившегося в естественных условиях, что неблагоприятно влияет на флору и фауну.

Следует отметить, что в некоторых случаях можно извлечь пользу от повышения температуры водоемов, например, разводя в таких водоемах рыбу, приспособленную к повышенной темпера­туре. В результате введения новых норм на АЭС «Вгоwп Ferry» (США) в процессе ее строительства пришлось проектировать и ус­танавливать дополнительные сооружения по охлаждению воды, на которые потребовалось 36 млн. долл. I

Тепловое загрязнение водоемов может быть уменьшено с пере­ходом на замкнутые циклы использования воды.

При сооружении гидроэлектростанций необходимо учитывать весь комплекс проблем, связанных с изменением экологической сре­ды, затоплением территории, влиянием на самые различные отрас­ли народного хозяйства. ­

Передача электрической энергии на расстояние в основном осу­ществляется по проводам воздушных линий, которые распростра­няются на многие километры и под которые отводится большая площадь «отчуждения». Линии электропередач создают электромагнитные излучения, вызывающие помехи в работе систем связи.

Иногда высказываются суждения о том, что линии электропередач портят ландшафт местности. Эти суждения в какой-то мере справедливы, но, возможно, часто они носят временный и сугубо субъективный характер. Можно вспомнить, что сразу же после сооружения Эйфелева башня в Париже многими современниками воспринималась как уродливое строение, в то время как сейчас она символизирует Париж и воспринимается как одно из лучших его украшений.

Существующее вблизи проводов высоковольтных линий элект­ропередач электромагнитное поле неблагоприятно действует на организм человека. Исследования показывают, что в нормальном че­ловеческом организме величина заряда меняется с периодами в 6 часов и 27 суток. И на этот процесс окружающее электромаг­нитное поле оказывает заметное влияние. Существует определенная связь между магнитными бурями и состояниями больных с сердечно-сосудистыми заболеваниями. Радиоволны с некоторыми частотами оказывают разрушительное влияние на живые клетки. На­пример, имеются данные о том, что при частоте излучений 27 мГц гибнет ряд растений и животных. По мнению биологов, жизнь ­- это тонкий электрический процесс. Возле электромагнитного поля могут изменяться электрохимические, а следовательно, и любые биохимические процессы в клетках. В то же время ни у растений, ни у животных не удалось обнаружить специальных магниточувстви­тельных органов. Однако несомненно, что магнитные и электриче­ские поля оказывают некоторое (не вполне ясное на сегодня) влияние на все живые организмы. .

Влияние сильных электромагнитных полей (изменяющихся с промышленной частотой 50 Гц) на человека к настоящему вре­мени пока мало изучено. Проведенные в нашей стране и за рубе­жом исследования показали, что сильное электромагнитное поле вызывает функциональное нарушение сердечно-сосудистой системы и нарушения невралгического характера. Вредные воздействия на человека сильных полей были замечены при вводе в эксплуатацию высоковольтных подстанций напряжением 400-750 кВ. Повторяю­щееся электромагнитное облучение человека приводит к накапли­вающимся (кумулятивным) эффектам, пока еще также не вполне изученным. Однако уже очевидно, что вредные последствия пребы­вания человека в сильном электромагнитном поле зависят от на­пряженности Е поля и от продолжительности его воздействия Т. Чем больше напряженность поля, тем меньшая продолжительность пребывания в нем человека допускается (рис. 5). При 20 кВ/м воздействие поляпроявляется немедленно в виде неприятных ощу­щений и последующих расстройств функций ор­ганизма. При 5 кВ/м не­приятных проявлений не наблюдается. Величина напряженности поля уменьшается с увеличе­нием расстояния от ис­точников излучения по­ля - проводов. Весьма важно установление до­пустимых безопасных расстояний от линий электропередач высокого напряжения до жилых по­строек.

При больших величинах напряженности электрического поля необходимо применять специальные защитные мероприятия, напри­мер использовать защитные экранирующие костюмы, сетки, умень­шающие эффект поля, и т. д.

Чтобы уменьшить расходы земли под полосы «отчуждения», ис­пользуют кабельные линии при вводах электропередач в крупные города. В энергетике перспективно применение сверхпроводящих и криогенных линий электропередачи. Сопротивление проводов та­ких линий близко к нулю, что позволяет использовать низкое на­пряжение и решить проблему изоляции проводников.

Громоздкие открытые распределительные устройства, занимаю­щие большие территории в городах, в будущем могут сооружаться закрытыми, наполненными изолирующим газом и расположенны­ми под землей.

Размещение электростанций по территории страны должно осу­ществляться с учетом загрязнения ими окружающей среды. Очевид­но, что станции, работающие на низкосортном топливе и наиболее интенсивно загрязняющие атмосферу, должны проектироваться вдали от крупных населенных пунктов. В некоторых странах элект­ростанции строятся в морях и океанах для устранения их вредного влияния на окружающую среду и в конечном счете на человека. В Японии и США уже выполнены проекты сооружения ТЭС и АЭС в море в 5-30 км от берега. Разработаны различные проекты выполнения этих станций: плавучими, на опорных конструкциях и по­груженными в воду в специальных сферических помещениях.

Рис. 5 Воздействие электромагнитного поля на живые организмы

Рис. 6. Схема установки для переработки мусора в топливо

Современная цивилизация сталкивается с проблемой переработ­ки огромных потоков отходов, количество которых с каждым годом возрастает в угрожающих масштабах. Отходы в виде свалок из груд ржавеющего металла, бумаги, дерева, картона, пластмасс ста­новятся неизменными спутниками пригородных ландшафтов. По­мимо твердых отходов увеличиваются выбросы в реки и водоемы жидких отходов. По предварительным подсчетам, в США общий объем жидких отходов к 2000 г. будет примерно равен объему всех рек в континентальной части страны. Только одним жителем стра­ны в течение суток выбрасывается в канализационную систему в среднем около 500 л жидких отходов.

По подсчетам, опубликованным в США в 1971 г., в 100 крупней­ших городах этой страны образовался 71 млн. т органических твер­дых отходов. Из этого количества можно было бы получить19,6 млрд. м 3 метана, пригодного для самых различных энергети­ческих целей.

Из органических твердых отходов, содержащих метан, газы можно получать тремя способами: путем анаэробного разложения, гидрогазификации и пиролитической конверсии.

Есть предложения построить завод, который будет вырабаты­вать из 0,5 т городского мусора 1500 кубических футов метана (1 кубический фут равен 0,028 м 3) в день. Стоимость производства метана на таком заводе составит около 1 долл. за миллион британ­ских единиц тепла (1 Вtu = 1,055 кДж) .

Мусор сначала должен измельчаться для получения однород­ных по размерам частиц, а после извлечения черных металлов с по­мощью мощных магнитов разделяться в воздушном «классифика­торе». Образовавшийся газ будет содержать 50-60 % метана и двуокись углерода и может использоваться в качестве топлива с низкой теплотворной способностью. Чтобы повысить теплотвор­ную способность, из него можно удалить двуокись углерода.

Шлам (лигнин, пластмассы, непереработанная целлюлоза) после фильтрования будет превращаться в брикеты, занимающие в два раза меньший объем, чем исходные материалы до загрузки в автоклав. Эти брикеты можно использовать как топливо на промыш­ленных предприятиях.

Проводятся эксперименты по получению метана из мусора или навоза путем гидрогазификации. Гидрогазификация предусматри­вает реагирование содержащих углерод веществ с водородом с образованием газа, состоящего в основном из метана. Реакция проходит с выделением тепла, что позволяет превращать городской мусор, содержащий большое количество влаги, в газ без дополни­тельного нагрева.

Как показали эксперименты, рассмотренным путем из обычного городского мусора можно получать газ, содержащий 70 % метана, а также этан и водород. При переработке навоза получается газ с 93 % -ным содержанием метана. Стоимость производства такого газа составляет менее 1 долл. за миллион британских единиц тепла.

Одна из американских фирм использует бактериальные топлив­ные элементы для получения из органических отбросов электро­энергии и метана. Электрический ток ионизирует воду, разлагая ее на кислород и водород. Водород, органические отбросы и метан направляются в пиролитический конвертор для производства «сы­рой нефти», горючего газа с теплотворной способностью 500 британ­ских единиц тепла на кубический фут, древесного угля и дегтя.

Результаты лабораторных испытаний показывают, что есть воз­можность получить из 1 т мусора 10-15 тыс. кубических футов га­за, содержащего 50 % метана.

Во многих городах США созданы или создаются установки для переработки отходов в сырье или энергию. Так, в Балтиморе по­строена установка для пиролиза тысяч тонн мусора в день с целью выработки тепла, которое будет использоваться в теплофикацион­ной сети. В Чикаго к концу 1976 г. закончилось строительство ус­тановки для переработки в топливо 1 тыс. Т мусора в день. После пуска этой установки город экономит на топливе 2 млн. долл. в год.

Около 300 американских городов с населением более 10 тыс. человекв течение ближайших 5 лет намерены осуществить проекты утилизации мусора. Теплотворная способность мусора составляет 13,4 МДж на 9,8 Н. Всего по стране в мусоре содержится количест­во энергии, равное 1,5 % общего потребления энергии в США.

Природные возможности естественной переработки и вторичного использования отходов весьма ограничены. Поэтому перед челове­ком возникает настоятельная необходимость в эффективной пере­работке и вторичном использовании отходов, которая явилась как бы развитием естественных свойств природы. Решение этой проблемы возможно будет лишь в том случае, если удастся полу­чить очень дешевый источник энергии практически неограниченной мощности. Наиболее реальна перспектива переработки отходов в термоядерной «горелке». Если в поток плазмы с температурой порядка 100000 0 С, создаваемой в термоядерном реакторе, помес­тить обычное вещество, то в нем произойдет разрушение всех мо­лекулярных связей и частичная ионизация. Перерабатывая отходы в термоядерной горелке, можно будет получать сверхчистые метал­лы, неметаллические вещества, газы и т. д. Реализация таких про­ектов, однако, дело отдаленного будущего. Тем не менее уже сегодня в этом направлении ведутся научные исследования.

.

На долю ТЭС в России приходится 16 % общего объёма загрязняющих веществ, поступающих в атмосферу от промышленных предприятий и транспорта.

Начиная с 1996 г. ЭК согласуют свою деятельность с "Экологической программой развития электроэнергетики до 2005 г." В основе этого основополагающего документа лежит задача постепенного сокращения выбросов (сбросов) загрязняющих веществ в окружающую природную среду даже при условии восстановления к 2010 г. масштабов производства электрической и тепловой энергии до уровня 1990 г. В ходе разработки этой программы принимались во внимание также обязательства России, взятые ею на себя при подписании международных конвенций по уменьшению трансграничного переноса диоксида серы и стабилизации к 2010 г. эмиссии диоксида углерода на уровне 1990 г.

С экологической точки зрения ТЭС, играющие доминирующую роль в производстве электроэнергии (более 60 %), представляют собой объекты, длительно воздействующие на атмосферу выбросами продуктов сгорания топлива.

В 1997 г. сохранилась положительная тенденция уменьшения выбросов в атмосферу загрязняющих веществ от ТЭС за счёт благоприятного с экологической точки зрения топливного баланса (доля природного газа в котором увеличилась с 61,5 до 62,9 % за счёт вытеснения твердого и жидкого топлива), а также проведения на ТЭС реконструктивных и технологических мероприятий, направленных на подавление образования оксидов азота и повышение эффективности золоулавливающих установок.

Как показывают приведенные ниже данные, за 1990–1997 гг. имело место существенное снижение эмиссии основных загрязнений атмосферы за счёт работы ТЭС:

Твердых частиц – на 49,1 %;

Оксидов азота – на 33,1 %;

Диоксида серы – на 43,2 %.

Заметим, однако, что за тот же период производство электроэнергии и теплоты на ТЭС снизилось на 34,2 %.

В перспективе намечается дальнейшее снижение вредных выбросов ТЭС в атмосферу, что должно обеспечить их снижение за 1990-2005 гг. до следующих уровней:

Твердых частиц – на 31,4 %;

Оксидов азота – на 12,8 %;

Диоксида серы – на 11 %.

Заметим, что наряду с мероприятиями по уменьшению вредных выбросов на ТЭС большие резервы имеются также в области энергосбережения, потенциал которого оценивается в 400 млн. т условного топлива.

ТЭС уничтожают невосполнимые запасы органического топлива, при сжигании которого образуются: шлак, пепел, сернистый ангидрид, углекислый газ, которые непосредственно загрязняют окружающую среду и влияют на потепление климата земли.

Как было ранее указано, ТЭС производится основная часть вырабатываемой электрической энергии, поэтому усовершенствованию технологических процессов сжигания топлива на ТЭС уделяется особое внимание с целью снижения отрицательного их воздействия на окружающую среду.

Воздействие ТЭС на ОС зависит и от используемого топлива. Виды топлива: твёрдое (угль, горючие сланцы), жидкое (мазут, дизельное и газотурбинное топливо) и газообразное (природный газ).

В ТЭС использующих уголь, а это топливо с высоким содержанием сернистых соединений, образующийся сернистый газ в конечном итоге превращается при взаимодействии с парами воды воздуха в стойкую серную кислоту, которая представляет угрозу здоровью человека, водоемам, и вызывает активную коррозию металлических сооружении в близлежащих районах.

Защита атмосферы от основного источника загрязнения ТЭС – сернистого ангидрида – осуществляется, прежде всего, путём его рассеивания в более высоких слоях воздушного бассейна. Для этого сооружаются дымовые трубы высотой 180, 250 и даже 320 м. Более радикальное средство сокращения выбросов сернистого ангидрида – выделение серы из топлива до его сжигания. В настоящее время существуют в основном два способа предварительной обработки топлива для снижения содержания серы, которые могут быть рекомендованы к промышленному использованию. Первый способ – химическая адсорбция, второй – каталитическое окисление. Оба способа позволяют улавливать до 90 % сернистого ангидрида.

При сжигании твердого топлива в атмосферу поступают летучая зола с частицами не догоревшего топлива, сернистый и серный ангидриды, окислы азота, некоторое количество фтористых соединений, а также газообразные продукты неполного сгорания топлива. Летучая зола в некоторых случаях содержит помимо нетоксичных составляющих и более вредные примеси. Так, в золе Донецкого угля в незначительных количествах содержится мышьяк, а в золе Экибастузского – свободная двуокись кремния, в золе сланцев и углей Канско-Ачинского бассейна – свободная окись кальция.

При сжигании жидкого топлива (мазута) с дымовыми газами в атмосферный воздух поступают: сернистый и серный ангидриды, окислы азота, газообразные и твердые продукты неполного сгорания топлива, соединения ванадия, солей натрия, а также вещества, удаляемые с поверхности котлов при чистке. С экологической позиции жидкое топливо является более «гигиеничным» по сравнению с твёрдым топливом. Отпадает проблема отвалов золы, которые занимают значительные территории, и не только исключают их из полезного использования, но и являются источником постоянных загрязнении атмосферы в районе станции из-за уносов части золы с ветрами. Кроме того, в продуктах сгорания жидких видов топлива отсутствует летучая зола. Однако доля использования жидкого топлива в энергетике за последние годы существенно снижается. Это связано с использованием жидкого топлива в других областях народного хозяйства: на транспорте, в химической промышленности, в том числе в производстве пластмасс, смазочных материалов, предметов бытовой химии и т.д.

При сжигании природного газа существенным загрязнителем атмосферы являются окислы азота. Однако при этом выброс окислов азота в среднем на 20 % ниже, чем при сжигании угля. Это объясняется не только свойствами самого топлива, но и особенностями процессов его сжигания. Таким образом, природный газ сегодня – наиболее экологически чистый вид энергетического топлива. Применение газообразного топлива на ТЭС, особенно в случае их работы в теплофикационном режиме в пределах крупных городов, в последнее время возрастает. Однако природный газ – ценное технологическое сырье для многих отраслей химической промышленности. На поставках природного газа полностью основывается, например, производство азотных удобрений в стране.

Однако снабжение газом энергетических установок связано с трудностью складирования газообразного топлива. Ведь надёжность топливоснабжения станции полностью зависит от расходных характеристик питающего станцию газопровода. Расходные характеристики газопровода имеют сезонные, месячные, недельные и часовые неравномерности потребления. Как и в энергосистемах, где имеются ярко выраженные «провалы» и «пики» электропотребления, колебания наблюдаются и в газоснабжающей системе. Причем «пики» и «провалы» в графике электро- и газоснабжающих систем совпадают во времени, что отрицательно сказывается на топливоснабжении, т.е. в то время, когда резко возрастает потребность в электроэнергии и необходимо пустить дополнительные пиковые, например газотурбинные энергоустановки (ГТУ), в газовой магистрали отсутствуют требуемые расходы газа. При отсутствии газа в магистрали можно используют дублирующий вид топлива – жидкое топливо. Использование твёрдого топлива, в качестве дублирующего, не целесообразно из-за иной конструкции котловых агрегатов и специальной системы топливоподготовки и т.д.

Создание запасов газа может быть осуществлено с помощью подземных хранилищ газа (ПХГ), для которых обычно используют объем шахтных выработок или иные естественные подземные ёмкости. Однако таким образом запасы газа для электростанций создать нельзя, поскольку необходимы соответствующие геологические условия в районе энергоустановки, что не всегда возможно. И, кроме того, есть значительные ограничения по величине и скорости подачи газа из хранилищ, что определяется техническими и экономическими обстоятельствами. Другой подход в создании ПХГ - это резервирование газообразного топлива с использованием технологии сжижения. Сущность резервирования газа с использованием сжижения заключается в следующем. Периодически в магистрали имеется избыток газа в момент "провала" графика нагрузки электропотребления. Природный газ забирается из магистрали через систему осушки и очистки и подается на холодильную установку системы сжижения. После сжижения топливо (при отрицательной температуре около –150 °С и атмосферном давлении) подается в хранилище сжиженного природного газа (ХСПГ). В случае, когда располагаемый расход топлива в магистрали снизился ниже требуемого уровня или отсутствует вообще, для нужд топливоснабжения энергоустановки используется система резервирования. При этом сжиженный природный газ подогревается, переходя снова в газообразное состояние, и направляется на сжигание в энергоустановку. Поскольку для регазификации необходимо тепло, используются потоки сбросного тепла энергоустановки. Тепловая «централизация» этих потоков в процессе регазификации позволяет снизить тепловые сбросы энергоустановки в окружающую среду.

В целом взаимодействие ТЭС с окружающей средой характеризуется помимо выбросов золы с продуктами сгорания еще и тепловыми сбросами.

Системы охлаждения конденсаторов ТЭС существенно увлажняют микроклимат в районе станции, способствуют образованию низкой облачности, туманов, снижению солнечной освещенности, вызывают моросящие дожди, а в зимнее время - иней и гололед. С охлаждающей водой ТЭС сбрасывает в близлежащие водоемы большое количество тепла, повышающее температуру воды. Влияние подогрева на флору и фауну водоемов различно в зависимости от степени подогрева. Незначительный подогрев воды при её ускоренной циркуляции благоприятно сказывается на очистке водоёмов, поэтому сточные воды должны предварительно охлаждаться и подвергаться очистке. Уменьшение отрицательного влияния сброса тепла в водные бассейны может быть достигнуто за счёт организации водохранилищ-охладителей. В среднем на 1 кВт установленной мощности ТЭС необходимо 58 м2 поверхности водохранилища.

Для уменьшения безвозвратных потерь воды используют воздушно-конденсационные установки (вку), в которых охлаждение конденсата происходит в специальных теплообменниках конверторного действия за счёт теплообмена с воздушной, а не водной средой (препятствие для широкого использования ВКУ – это их высокая стоимость).

Атомные станции (АЭС) потенциально опасны как с точки зрения утилизации продуктов распада радиоактивного топлива, захоронение которых не обеспечивает полной защиты от экологической катастрофы, так и от крупных аварий (например, авария на Чернобыльской АЭС в 1984 году).

Одна из важнейших особенностей ядерной энергетики – отсутствие зависимости работы АЭС от расстояний до мест добычи ядерного топлива, что снимает проблему расположения станций в зонах запасов топлива и позволяет приблизить АЭС к потребителю (для средней по мощности атомной станции в течение года требуется около 100–150 тонн ядерного топлива). Это объясняется прежде всего тем, что количество энергии, высвобождающейся при использовании 1 кг горючего в ядерных реакторах, более чем в 106 раз дольше, чем при химических реакциях сжигания 1 кг наиболее калорийного органического топлива.

Эксплуатация атомных станций позволяет заметно снизить уровень загрязнения окружающей среды компонентами, характерными для работы тепловых станций – С0 2 , S0 2 , МО х, пылевидными частицами и т. д. Основными факторами загрязнения среды выступают радиационные показатели. Это радиация от охлаждающей воды, активированные пылевидные частицы, находящиеся в сфере воздействия излучения и попадающие через вентиляционные каналы за пределы станции. Кроме того, это проникающая радиация через корпус реактора и тепловое воздействие на воду системы охлаждения конденсационной части станции. Несомненно, что воздействие перечисленных факторов на среду определяется многими показателями, в том числе такими, как конструкция реактора, тип оборудования контроля и вентиляции, системы очистки отходов и их транспортировки.

Наибольшую опасность АЭС представляют аварии и неконтролируемое распространение радиации.

При эксплуатации АЭС существует также проблема теплового загрязнения. В расчете на единицу производимой энергии АЭС сбрасывает в окружающую среду больше тепла, чем ТЭС при аналогичных условиях. Расход охлаждаемой воды, в зависимости от мощности, составляет от 70–180 , что соответствует стокам таких рек, как Хопер или Южный Буг.

Гидравлические электростанции. При создании водохранилищ для ГЭС затопляются большие площади лесов, сельскохозяйственных угодий, памятников культуры, а в некоторых случаях требуется переселение целых населённых пунктов. В экстремальных ситуациях (при прорыве плотин) может быть нанесён значительный ущерб экономике регионов, существует также опасность затопления городов. С поверхности водохранилищ испаряется повышенное количество влаги, которое непосредственно сказывается на изменении климата регионов и земли в целом.

Рассмотрим проблемы экологического взаимодействия гидротехнических комплексов на окружающею среду.

Гидроэнергетические станции часто относят к энергоустановкам, использующим возобновляемые источники энергии. Однако по сравнению с другими видами природных ресурсов преобразование энергии воды в электрическую энергию приводит к значительным воздействиям на окружающую среду. Для гидростанций необходимо сооружать значительные водохранилища, что приводит к затоплению прилегающей территории. Чем более равнинный рельеф в районе сооружения ГЭС, тем большие территории попадают в зону затопления.

Влияние водохранилищ на локальные климатические условия носит двойственный характер - охлаждающего и отепляющего воздействия.

Одним из важных факторов, определяющих последствия воздействия водохранилищ на окружающую среду, является площадь поверхности водохранилища. Около 88% общего числа водохранилищ в нашей стране сооружены в равнинных условиях, используемые на ГЭС напоры достигают 15–25 м, а площадь зеркала акваторий - иногда и нескольких тысяч квадратных километров.

Существенным фактором воздействия на окружающую среду является засоление и ощелачивание плодородных земель в районах орошения в случае недостаточного дренажа, что приводит к потерям полезных земель.

Малоизученным последствием строительства плотин ГЭС является, по мнению некоторых геологов и сейсмологов, так называемая "наведенная сейсмичность" в зоне расположения мощных гидроузлов и больших по объему водохранилищ. По существующей гипотезе, дополнительные напряжения, создаваемые весом воды в акватории и непосредственно самой плотиной, способны нарушить равновесное состояние земной коры в этом районе. При наличии в нем ранее неизвестных геологических разломов освободившееся напряжение значительно превышает размеры "возмущающей" нагрузки от массы воды и гидросооружений. Так, например, в декабре 1967 года в Индии была полностью разрушена плотина Коупа высотой 103 м. Причиной катастрофы явилось землетрясение, эпицентр которого располагался непосредственно под телом плотины.

Комплексный подход к определению оптимального использования ГЭС в энергосистемах приводит к выводу о целесообразности внедрения нового типа гидростанций – гидроаккумулирующих электростанции (ТАЭС). Этот перспективный тип гидроэнергетических установок предназначен, прежде всего, для выравнивания неравномерности графика электропотребления и облегчения режимов эксплуатации электростанции других типов. В ночное время и в периоды выходных дней при снижении электропотребления промышленного сектора ГАЭС работают в насосном режиме на электроэнергии, вырабатываемой другими электростанциями. При этом аккумулируются гидроэнергетические ресурсы, так как вода из нижнего барьера водохранилища электростанции перекачивается в верхний. В период резкого роста электропотребления ГАЭС переходит в генераторный режим работы и реализует «накопленные» ресурсы. Использование ГАЭС ведет к экономии топлива в энергосистеме. При этом снижается проблема покрытия пиков графика нагрузки. Это особенно важно, так как с ростом единичных мощностей агрегатов ТЭС и АЭС резко ухудшились их маневренные характеристики. Поскольку использование ГАЭС позволяет в конечном итоге осуществить снижение потребления органического топлива в энергосистеме, то эти энергоустановки с полным основанием можно рассматривать как одни из возможных методов улучшения экологических характеристик энергооборудования.

Общее вредное влияние энергетических объектов:

Энергетические объекты являются источниками излучения электромагнитных полей, которые оказывают отрицательное влияние на здоровье людей (нормируемая напряжённость электромагнитного поля составляет 20кВ/м в течение 10 минут за сутки), создают помехи для телерадиовещания. Так, например, под ЛЭП 500кВ напряжённость поля составляет 10кВ/м, под ЛЭП 750кВ – 15кВ/м.

Энергоустановки являются также источниками шума.

Изъятие из пользования природных ресурсов, земли и воды.

Мероприятия по снижению отрицательного влияния энергосистем на окружающую среду:

· Для ТЭС – усовершенствование процессов сжигания топлива, очистку продуктов сжигания и увеличение высоты труб при их выбросе в атмосферу.

· Для ГЭС – снижения строительства на реках с высоким уровнем «подпора», создание рыбоохранных сооружений, уменьшение «зеркал» поверхности водохранилищ.

· Для АЭС – совершенствование конструкций энергоблоков, методов и объектов захоронения ядерных отходов.

· Использование альтернативных, экологически чистых и безопасных, способов получения лучения электрической энергии.

Как влияет энергетика на окружающую среду?

Защита окружающей человека среды, как это всем хорошо известно, - одна из важнейших глобальных проблем. Мы остановимся только на той части проблемы, которая связана с электростанциями. Воздействие на окружающую среду различных типов электростанций (ТЭС, ГЭС, АЭС) различно, и поэтому рассмотрим каждый из этих трех случаев отдельно.

Пожалуй, наибольшее отрицательное воздействие на окружающую среду в настоящее время оказывают ТЭС. Их воздействие заключается в загрязнении атмосферы мелкими твердыми частицами золы (Так как большинство ТЭС использует в качестве топлива мелкоизмельченный (в специальных мельницах) уголь, унос мелких частиц несгоревшего угля ничтожен; коэффициент избытка воздуха в топке всегда больше единицы (примерно на 20%). )и особенно выбросами с уходящими газами окислов серы (если, конечно, сера содержится в топливе, что бывает сплошь и рядом) и окислов азота.

Что касается выбросов мелких частиц золы, то для борьбы с этим злом налажен массовый выпуск фильтров с КПД 95 - 99%. Можно было бы считать этот вопрос решенным, если бы на многих электростанциях, работающих на угле, фильтры не находились бы в столь безобразном состоянии, что их КПД снижается до 80% и даже еще более. Но это уже вопрос порядка, дисциплины.

С выбросами окислов серы и азота дело обстоит гораздо сложнее (Окислы серы возникают при сжигании любого топлива (угля, мазута, природного газа), если в нем содержится сера; окислы азота образуются при сжигании любого топлива тем в большем количестве, чем выше температура. ). До настоящего времени не создано эффективно действующих и дешевых фильтров. Однако необходимо отметить, что работа по созданию таких фильтров ведется энергично, и, нужно думать, она будет успешно завершена к 2000 г., а может быть, и ранее. Пока что для избежания предельных концентраций SO X и NO 2 в местах расположения электростанций строятся высокие выхлопные трубы - до 320 - 350 м.

Следует заметить, что окислы углерода, когда речь идет о тепловых электростанциях, не создают сколько-нибудь серьезных затруднений. Продукт неполного сгорания углерода СО, вредно действующий на людей даже в малых концентрациях, в продуктах сгорания ТЭС практически отсутствует. Как уже говорилось выше, причиной этого является большой избыток воздуха.

Выбросы углекислого газа СО 2 , который независимо от человеческой деятельности входит в состав атмосферы в количестве около 0,03% по объему, обращают на себя внимание главным образом с точки зрения увеличения так называемого парникового эффекта атмосферы и связанного с этим возможного повышения температуры атмосферы. Сущность парникового эффекта в том, что атмосфера Земли прозрачна для основной части излучения Солнца (в оптическом диапазоне). В атмосфере Земли излучение поглощается молекулами СО 2 , Н 2 О и другими, именно поэтому увеличение углекислоты в атмосфере Земли может привести к повышению ее (атмосферы) температуры.

К повышению температуры атмосферы и поверхности Земли может привести также увеличение производства и потребления энергии. Необходимо помнить, что вся произведенная энергия, согласно второму началу термодинамики, в конце концов превратится в тепло.

Все эти рассуждения о росте температуры атмосферы и поверхности Земли были, однако, поколеблены проведенными наблюдениями. С начала XX в. до 40-х годов среднегодовая температура повысилась приблизительно на 0,7° С, а площадь арктических льдов уменьшилась на 10%. Объясняли это увеличением концентрации СО 2 в атмосфере и ростом производства и потребления энергии.

Но за последующие приблизительно 30 лет, несмотря на рост выбросов СО 2 в 2 раза к продолжающееся увеличение производства и потребления энергии, происходило и продолжает происходить снижение температуры, которая может скоро приблизиться к уровню конца XIX в.

Что все это означает? Только то, что мы еще плохо знаем описываемые процессы. Многие считают, что до сих пор не принималось во внимание значение аэрозолей - находящихся во взвешенном состоянии мельчайших твердых частиц и капель жидкости. Рассмотрение этой гипотезы ведется.

Что касается жидкой фазы (рек, озер, прудов), то ТЭС сколько-нибудь существенно их не загрязняют. Надо только внимательно следить, чтобы нагрев воды, например пруда, не превысил допустимых пределов. В случае чего всегда есть запасной вариант - градирня. Умеренный нагрев пруда может быть даже полезным - содействовать рыбному хозяйству.

Разговор о воздействии ТЭС на окружающую среду можно было бы считать на этом исчерпанным. Но нам хочется, несколько выходя за рамки установленной программы, поставить такой вопрос: какие источники загрязнения наиболее существенны для атмосферы?

Для развитых стран, особенно для больших городов, это автомобиль. В ФРГ, например, на долю ТЭС приходится около 25% всего используемого топлива, а на долю автомобилей - около 12%. В то же время в загрязнении воздушной среды на долю ТЭС приходится примерно 9% (это, конечно, немало, но, как сказано выше, есть реальные возможности резкого снижения этой цифры), а на долю автомобилей 50%.

Дело заключается в том, что в автомобилях (с карбюраторными двигателями) плохо сжигается топливо. Автомобили имеют, в частности, в отработавших продуктах сгорания много СО и NO x .

Вслед за автомобилями большое загрязнение атмосферы приносят отопительные (особенно нецентрализованные) установки, а также выхлопные газы предприятий.

Промышленные предприятия (особенно целлюлозно-бумажной, химической и нефтехимической промышленности, цветной металлургии и некоторые другие) - главные загрязнители водных объектов. Поэтому особо большое внимание должно уделяться очистным сооружениям. Кардинальное решение проблемы - создание предприятий с использованием воды в замкнутом контуре. Переходим теперь к ГЭС. Всего несколько десятилетий назад широкое распространение получила неправильная точка зрения о том, что ГЭС якобы не могут отрицательно влиять на окружающую среду. К сожалению, как об этом говорилось выше, дело обстоит не так.

На вопрос о том, можно ли сказать, что ГЭС настолько отрицательно влияют на окружающую среду, что их не надо строить вовсе, или, наоборот, влияние ГЭС на окружающую среду настолько мало, что их ничтоже сумняшеся можно строить дальше, единого ответа дать нельзя. В некоторых конкретных случаях их строить можно и должно, а в некоторых - нет.

В наибольшей мере объективный ответ на этот вопрос зависит от характеристики будущего водохранилища. Поэтому, повторяем, ответ о целесообразности строительства каждой конкретной ГЭС должен рассматриваться самостоятельно. К важнейшим характеристикам водохранилища относятся: размер зеркала водохранилищ, наличие в водохранилищах мелководий, влияние водохранилищ на местный климат, состояние почв и растительности, а также на рыбное хозяйство и водный (речной) транспорт.

Нельзя дать каких-либо твердых цифровых показателей типа: если на тысячу установленных киловатт ГЭС приходится не более n квадратных километров зеркала водохранилища, то ГЭС строить можно, а если больше, то - нет. Надо, конечно, учитывать, насколько ценные земли (главным образом с точки зрения сельского хозяйства) будут затоплены.

Большим бедствием являются водохранилища, большую часть которых составляют мелководья. Возникают они в случаях, когда плотины ГЭС сооружаются в равнинной местности, например волжские ГЭС. Вода мелководий интенсивно прогревается солнцем, что создает благоприятные условия для развития сине-зеленых водорослей. Они в большинстве случаев не используются и, разрастаясь, гниют, заражают воду и атмосферу.

Важен также учет интересов речного судоходства. В принципе сооружение ГЭС оказывает двоякое воздействие на судоходство: повышение глубины реки в верхнем бьефе, что для судоходства выгодно, и необходимость (при сквозном движении судов) сооружения шлюзов, что влечет за собой дополнительные капиталовложения.

Два обстоятельства главным образом влияют на рыбное хозяйство. Во-первых, это касается так называемых проходных рыб, совершающих в период нереста миграцию из морей в реки, например из Каспийского моря в Волгу. Воздвижение плотин на пути их миграции может привести к ликвидации очень денных проходных рыб. Попытки создать специальные устройства для миграции проходных рыб пока к успеху не привели.

Во-вторых, дело заключается и в том, что уровень воды в реках, на которых построены плотины ГЭС, подвержен колебаниям, определяемым электрической загрузкой ГЭС и, следовательно, количеством воды, которая должна протекать через ее турбины. Нередки случаи, когда выметанная рыбами икра вблизи поверхности реки гибнет (засыхает) вследствие понижения уровня воды.

Вопросы безопасности ядерных реакторов были рассмотрены выше. Здесь нам остается добавить очень немного. Реакторы ВВР второго поколения, о которых также уже говорилось, должны обладать так называемой внутренней безопасностью.

Это значит, если возникнет аварийная ситуация, а эксплуатационный персонал произведет неправильные действия, реактор все равно остановится.

женская одежда оптом от производителя больших размеров

В рамках этого пособия автор не ставил задачу детальной характеристики воздействия отдельных отраслей промышленности и сельского хозяйства на окружающую среду. Однако считаем необходимым кратко охарактеризовать с этой точки зрения некоторые предприятия, в частности предприятия энергетики, которые являются обязательным звеном любой природно-промышленной системы.

Энергетика - основной движущий фактор развития всех отраслей промышленности, транспорта, коммунального и сельского хозяйства, база повышения производительности труда и благосостояния населения. У нее наиболее высокие темпы развития и масштабы производства. Доля участия энергетических предприятий в загрязнении окружающей среды продуктами сгорания органических видов топлива, содержащих вредные примеси, а также отходами низкопотенциальной теплоты значительна. От типа предприятий энергетики зависит степень этого влияния.

Комплексное влияние предприятий теплоэнергетики на биосферу в целом проиллюстрировано данными табл. 2.3.

Таблица 23

Комплексное влияние предприятий теплоэнергетики на биосферу

Технологический

Почвы и грунт

Экосистемы и человек

Добыча нефти и газа

Углеводородное загрязнение при испарении и утечках

Повреждение или уничтожение почв при разведке и добыче топлива, передвижениях транспорта и т.п.; загрязнение нефтью, техническими химикатами, металлоломом и другими отходами

Загрязнение нефтью в результате утечек, особенно при авариях и добычах со дна водоемов; загрязнение технологически-ми химреагентами и другими отходами; разрушение водоносных структур в фунтах, откачка подземных вод, их сброс в водоемы

Разрушение и повреждение экосистем в местах добычи и при обустройстве месторождений (дороги, линии электропередач, водопроводы и т.п.); загрязнение при утечках и авариях; потеря продуктивности, ухудшение качества продукции; воздействие на человека в основном через биопродукцию

Загрязнение почв, загрязнение вод нефтью и химреагентами - гибель планктона и других групп организмов - снижение рыбопродуктив-ности - потеря потребительских или вкусовых свойств воды и продуктов промысла

Продолжение табл. 2.3

Технологический

Влияние

Примеры цепных реакций в биосфере

Почвы и грунт

Экосистемы и человек

твердого

взрывных

и других работах, продукты горения терриконов и т.п.

Разрушение почвы и грунтов при добыче открытыми методами (карьеры): просадки рельефа, разрушение грунтов при шахтных методах добычи

Сильное нарушение водоносных структур; откачка и сброс в водоемы шахтных, часто высокоми- нерализи- рованных, железистых и других вод

Разрушение экосистем или их элементов, особенно при открытых способах добычи; снижение продуктивности: воздействие на биоту и человека через загрязненные воздух, воду и пищу; высокая степень заболеваемости, травматизма и смертности при шахтных способах добычи

Транспортировка топлива

Загрязнение при испарении жидкого топлива, потерях газа, нефти, пылью от твердого топлива

Загрязнение при утечках, авариях, особенно нефтью

Загрязнение нефтью в результате потерь и при авариях

В основном через загрязнение вод и гидро- бионтов

Окончание табл. 23

Влияние на элементы среды и живые системы

Почвы и грунт

Экосистемы и человек

реакций в биосфере

Работа электро- станций на твердом

Основные поставщики углекислого газа, сернистого ангидрида, окислов азота, продуктов для кислых осадков, аэрозолей, сажи; загрязнение радиоактивными веществами, тяжелыми металлами

Разрушение и сильное загрязнение почв вблизи предприятий (техногенные пустыни); загрязнение тяжелыми металлами, радиоактивными веществами, кислыми осадками; отчуждение земель под землеотвалы, другие отходы

Тепловое загрязнение в результате сбросов подогретых вод; химическое загрязнение через кислые осадки и сухое осаждение из атмосферы; загрязнение продуктами вымывания биогенов и ядовитых веществ (алюминии) из почв и грунтов

Основной агент разрушения и гибели экосистем, особенно озер и хвойных лесов (обеднение видового состава, снижение продуктивности, разрушение хлорофилла, вымывание биогенов, повреждение корней и т.п.); эвтрофикация вод и их цветение; на человека влияет через загрязнение воздуха. воды, и продуктов питания; разрушение природы, строений, памятников и т.п.

Загрязнение воздуха продуктами горения, кислые осадки - гибель лесов и экосистем озер - нарушение круговоротов веществ, антропогенные сукцессии. Тепловое загрязнение вод - дефицит к испорола - эвтрофикация и цветение вод - усиление дефицита кислорода - превращение водных экосистем в болотные

Работа электростанций на жидком

топливе и газе

То же, но в значительно меньших масштабах

Тепловое загрязнение, как для твердого топлива, остальное в значительно меньших масштабах

То же, но в значительно меньших масштабах

В теплоэнергетике источником массированных атмосферных выбросов и крупнотоннажных твердых отходов являются теплоэлектростанции, предприятия и установки паросилового хозяйства, т.е. любые предприятия, работа которых связана со сжиганием топлива. В качестве топлива на тепловых электростанциях используют уголь, нефть и нефтепродукты, природный газ и, реже, древесину и торф.

При сжигании твердого топлива в атмосферу поступают летучая зола с частицами недогоревшего топлива, сернистый и серный ангидриды, оксиды азота, некоторое количество фтористых соединений, а также газообразные продукты неполного сгорания топлива. Летучая зола в некоторых случаях содержит помимо нетоксичных составляющих и более вредные примеси. Так, в золе донецких антрацитов в незначительных количествах содержится мышьяк, а в золе Экибастузского и некоторых других месторождений - свободный диоксид кремния, в золе сланцев и углей Канско-Ачинского бассейна - свободный оксид кальция. Уголь - самое распространенное ископаемое топливо на нашей планете. Специалисты считают, что его запасов хватит на 500 лет. Кроме того, уголь распространен по всему миру более равномерно и он более экономичен, чем нефть. Из угля можно получить синтетическое жидкое топливо. У этого топлива есть одно неоспоримое преимущество - у него выше октановое число, что делает его экологически более чистым.

При энергетическом использовании торфа имеет место ряд отрицательных последствий для окружающей среды, которые возникают из-за добычи торфа в широких масштабах. К ним, в частности, относятся нарушения режима водных систем, изменение ландшафта и почвенного покрова в местах торфодобычи, ухудшение качества пресной воды местных источников и загрязнение воздушного бассейна, резкое ухудшение условий существования животных. Значительные экологические трудности возникают и в связи с необходимостью перевозки и хранения торфа.

При сжигании жидкого топлива (мазутов) с дымовыми газами в атмосферный воздух поступают: сернистый и серный ангидриды, оксиды азота, соединения ванадия, соли натрия, а также вещества, удаляемые с поверхности котлов при чистке. С экологической точки зрения жидкое топливо более приемлемо. При его использовании полностью отпадает проблема золоотвалов, которые занимают значительные

территории, исключают их полезное использование и являются источником постоянных загрязнений атмосферы в районе станции из-за уноса части золы ветрами. В продуктах сгорания жидкого топлива отсутствует летучая зола.

При сжигании природного газа существенным загрязнителем атмосферы являются оксиды азота. Однако выброс оксидов азота при сжигании на ТЭС природного газа в среднем на 20% ниже, чем при сжигании угля. Это объясняется не свойствами самого топлива, а особенностями процесса сжигания. Коэффициент избытка воздуха при сжигании угля ниже, чем при сжигании природного газа.

Наряду с газообразными выбросами теплоэнергетика производит огромные массы твердых отходов, к которым относятся остатки углеобогащения, зола и шлаки.

Отходы углеобогатительных фабрик содержат 55-60% двуокиси кремния, 22-26% трехокиси алюминия, 5-12% трехокиси железа, 0,5-1% окиси кальция, 4-4,5% двуокиси калия и двуокиси натрия и до 5% углерода. Они поступают в отвалы, которые пылят, дымят и резко ухудшают состояние атмосферы и прилегающих территорий.

Основную часть выбросов теплоэлектростанций составляет углекислый газ - порядка 1 млн тонн. Со сточными водами тепловой электростанции ежегодно удаляется 66 т органических веществ, 82 т серной кислоты, 26 т хлоридов, 41т фосфатов и почти 500 т взвешенных частиц. Зола электростанций часто содержит повышенные концентрации тяжелых, редкоземельных и радиоактивных веществ.

Если учесть, что подобная электростанция активно работает несколько десятилетий, то ее воздействие на окружающую среду вполне можно сравнить с действием вулкана. Но если последний обычно выбрасывает продукты извержений в больших количествах разово, то электростанция делает это постоянно. За десятки тысячелетий вулканическая деятельность не смогла сколько-нибудь заметно повлиять на состав атмосферы, а хозяйственная деятельность человека за какие-то 100-200 лет обусловила огромные изменения за счет сжигания ископаемого топлива и выбросов парниковых газов разрушенными и деформированными экосистемами.

Коэффициент полезного действия теплоэнергетических установок составляет всего 30-40%, т.е. большая часть топлива сжигается впустую. Полученная энергия, в свою очередь, тем или иным способом превращается в тепловую, помимо химического в биосферу поступает и тепловое загрязнение. Отходы энергетических объектов в виде газовой, жидкой и твердой фазы распределяются на два потока: один вызывает глобальные изменения, а другой - региональные и локальные. Таким образом, энергетика и сжигание ископаемого топлива являются источником основных глобальных изменений в биосфере.

Особое место среди предприятий энергетики занимают гидроэлектростанции (ГЭС). Важнейшая особенность гидроэнергетических ресурсов но сравнению с топливно-энергетическими - их непрерывная возобновляемость. Отсутствие потребности в топливе для ГЭС определяет низкую себестоимость получаемой электроэнергии. Поэтому сооружению ГЭС, несмотря на значительные удельные капиталовложения на 1 кВт энергии и продолжительные сроки строительства, придавалось и придается большое значение, особенно когда это касается энергоемких производств.

Несмотря на относительную дешевизну энергии, доля гидроэнергоресурсов в общем балансе постепенно снижается, что связано, в основном, с большой территориальной емкостью равнинных водохранилищ и мощным воздействием на экосистемы. Комплексное воздействие предприятий гидроэнергетики на окружающую среду проиллюстрировано данными табл. 2.4.

Как уже говорилось, одной из важнейших причин уменьшения доли энергии, получаемой на ГЭС, является мощное воздействие всех этапов строительства и эксплуатации гидросооружений на окружающую среду. Одним из наиболее неблагоприятных воздействий на окружающую среду является отчуждение значительных площадей пойменных плодородных земель под водохранилища. Значительные площади земли вблизи водохранилищ испытывают подтопление в результате повышения уровня фунтовых вод. Эти земли, как правило, переходят в категорию заболоченных. В равнинных условиях подтопленные земли могут составлять 10% и более от затопленных. Уничтожение земель и, следовательно, экосистем происходит также в результате их разрушения водой при формировании береговой линии. Эти процессы обычно протекают десятилетиями, имеют следствием переработку больших масс почвогрунтов, загрязнение вод, заиление водохранилищ. Таким образом, строительство водохранилищ вызывает нарушение гидрологического режима рек, свойственных им экосистем и видового состава населения водоемов.

Таблица 2.4

Комплексное воздействие предприятий гидроэнергетики на окружающую среду

Технологический процес

Влияние на элементы среды и живые системы

Примеры цепных реакций в биосфере

Экосистемы

и человек

тельство

Разрушение почв и грунтов на стройплощадках, подъездных путях, хозяйственных объектах и т.п.; перемещение больших масс грунтов, особенно при строительстве плотин и обваловании водохранилищ

Аэрозольное загрязнение продуктами разрушения почв, стройматериалами (особенно цементом); Химическое загрязнение в небольших объемах, в основном от работы техники, предприятий

Некоторое нарушение режима и загрязнение в местах строительства (обводные каналы и т.п.)

Частичное разрушение экосистем и их элементов (растительности, почв), фактор беспокойства для животных, интенсивный промысел и т.п.; влияние на человека в основном через изменение среды и социальные факторы

Текущая вода (река) -водохранилище (накопление химических веществ (эвтрофикация) плюс тепловое загрязнение) - зарастание водоема (цветение, обогащение органикой - обескислороживание - превращение экосистемы транзитного типа в аккумулятивно-за-стойную - порча воды - болезни рыб - потеря пищевых или вкусовых свойств воды и продуктов промысла

Продолжение табл. 2.4

на элементы среды и живые системы

Экосистемы

и человек

в биосфере

То же, что и при затоплении, плюс многолетнее разрушение береговой линии (абразия); формирование новых типов почв в прибрежной зоне

Повышение влажности, понижение температур, туманы, местные ветры; часто неприятный запах от гниения

органических

остатков

Загрязнение в результате стоков с водосборов и разложения больших масс органики, почв, растительных остатков, древесины и т.п.; образование фенолов, накопление биогенов и других веществ; усиленное прогревание, особенно мелководий (тепловое загрязнение); эвтрофикация, цветение, потеря кислорода; накопление тяжелых металлов. ила, радиоактивных и других веществ, порча воды

Окончание табл. 2.4

Техно-логический

на элементы среды и живые системы

Примеры цепных реакций в биосфере

Почвы и грунт

Экосистемы и человек

Заполнение

Уход под воду плодородных пойменных земель (затопление), подъем вод в прибрежной зоне (подтопление, заболачивание); в горных условиях такие явления выражены в меньшей степени

Дополнитель-ное испарение с чаши водо-хранилища

Смена текущих вод на застойные, неизбежное загрязнение водохранилищ быстрорастворимыми или взмучиваемыми веществами при заполнении и формировании берегов

Полное уничтожение сухопутных экосистем (сведение лесов или их гибель от подтопления, часто оставление всей биомассы в зоне затопления), смена прибрежных экосистем; неизбежное переселение людей из зоны затопления, социальные издержки

Давление водных масс на ложе водохранилищ - интенсификация сейсмических явлений

В водохранилищах резко усиливается прогревание вод, что способствует потере кислорода, "цветению" и другим процессам, связанным с тепловым загрязнением. Тепловое загрязнение, накопление биогенных веществ создает условия для зарастания водоемов и интенсивного развития водорослей, в том числе и ядовитых сине-зеленых. По этим причинам, а также вследствие медленной обновляемости вод снижается их способность к самоочищению.

Ухудшение качества воды ведет к гибели многих ее обитателей. Возрастает заболеваемость рыбного стада, особенно поражаемость гельминтами. Снижаются вкусовые качества рыбы.

Нарушаются пути миграции рыб, разрушаются кормовые угодья, нерестилища. Например, Волга во многом потеряла свое значение как нерестилище для осетровых Каспия после строительства на ней целого каскада ГЭС.

В результате перекрытые водохранилищами речные системы из транзитных превращаются в транзитноаккумулятивные. Кроме биогенных веществ здесь аккумулируются тяжелые металлы, радиоактивные элементы и многие ядохимикаты с длительным периодом жизни. Накопление токсичных веществ делает невозможным использование территорий, занимаемых водохранилищами, после их ликвидации.

Водохранилища заметно изменяют климат региона, оказывая влияние на атмосферные процессы. Испарение с поверхности водохранилищ превышает испарение с такой же поверхности суши в десятки раз. С повышением испарения понижается температура воздуха, увеличивается количество туманов. Различие тепловых балансов водохранилищ и прилегающей суши обусловливает формирование местных ветров типа бризов. Все сопутствующие этому явления способствуют смене экосистем, что приводит к необходимости в ряде случаев менять направление сельскохозяйственного производства.

Ядерная энергетика в настоящее время может рассматриваться как наиболее перспективная. Это связано как с относительно большими запасами ядерного топлива, так и со щадящим воздействием на окружающую среду. К преимуществам также относится возможность строительства АЭС, не привязываясь к месторождениям ресурсов, поскольку их транспортировка не требует существенных затрат в связи с малыми объемами. Известно, что 0,5 кг ядерного топлива позволяет получить столько же энергии, сколько сжигание 1000 т каменного угля.

Известно также, что процессы, лежащие в основе получения энергии на АЭС (реакции деления ядер атомов) гораздо более опасны, чем процессы горения. Именно поэтому ядерная энергетика впервые в истории развития промышленности реализует принцип максимальной безопасности при максимально возможной производительности.

Многолетний опыт работы АЭС во всех странах показывает, что они не оказывают заметного влияния на окружающую среду в нормальных условиях эксплуатации. Атомная энергетика по всем значимым показателям имеет преимущества по сравнению с энергетикой на органическом топливе (табл. 2.5).

При нормальной работе АЭС выбросы радиоактивных элементов в окружающую среду крайне незначительны. В среднем они в 2-4 раза меньше, чем от ТЭС аналогичной мощности.

Таблица 2.5

Воздействие электростанций на окружающую среду в зависимости от используемого топлива

К моменту аварии на Чернобыльской АЭС (май 1986 г.) 400 энергоблоков, работавших в мире и дававших более 17% электроэнергии, увеличили природный фон радиоактивности не более, чем на 0,02%. После 1986 г главную экологическую опасность АЭС стали связывать с возможностью аварии. Такая возможность невелика, но она не исключается.

В результате аварии на Чернобыльской АЭС радиоактивному заражению подверглась территория в радиусе более 2000 км, охватившая более 20 государств. В пределах бывшего СССР пострадало 11 областей, где проживало 17 млн человек. Общая площадь загрязненных территорий превысила 8 млн га или 800 000 км 2 .

После Чернобыльской аварии во многих государствах по требованию общественности были временно прекращены или свернуты программы строительства АЭС, однако атомная энергетика продолжала развиваться в 32 странах. Возрастающая потребность в энергии развивающейся промышленности и сельского хозяйства, крайне опасные воздействия на атмосферу двуокиси углерода и других вредных для окружающей среды и человека продуктов горения органического топлива являются мощным стимулом для совершенствования имеющихся и разработки современных способов повышения безопасности АЭС на этапах строительства, ввода в действие и эксплуатации.

Строительство АЭС должно осуществляться на расстоянии 30-35 км от крупных городов. Участок должен хорошо проветриваться, во время наводка не затопляться. Вокруг АЭС предусматривают место для санитарно-защитной зоны, в которой запрещается проживание населения.

Главная задача в проблеме обеспечения безопасности АЭС состоит в том, чтобы надежно локализовать осколки деления и продукты их радиоактивного распада как при нормальной эксплуатации, так и при возможных авариях, связанных с повреждением оборудования, неисправностями в системе управления, ошибочными действиями обслуживающего персонала или стихийными бедствиями.

В общих случаях таких барьеров обычно четыре, последний из которых (четвертый) - это специальные защитные оболочки, исключающие загрязнение атмосферы при разуплотнении корпуса реактора или контура циркуляции теплоносителя. Защитные оболочки - это сплошные железобетонные или металлические сооружения, рассчитанные на снижение давления, удержание радиоактивного пара и улавливание радиоактивных продуктов в случае максимальной проектной аварии. На АЭС с водяным теплоносителем основной источник радиоактивности - вода первого контура, в которую проникают осколки деления и активированные продукты коррозии конструкционных материалов. Поэтому все радиоактивное оборудование АЭС должно быть окружено биологической защитой, снижающей мощность нейтронного и гамма-излучения до допустимого уровня.

Низкие уровни радиоактивных выбросов обеспечиваются совершенной технологией фильтрации. Радиоактивные газы направляются в систему очистки, состоящую из аэрозольных, угольных фильтров и газгольдеров, где они выдерживаются до полного распада короткоживущих радионуклидов и только затем сбрасываются в атмосферу. В месте выброса газов постоянно производится измерение их количества и радиоактивности. Радиационная обстановка контролируется на различных удалениях в радиусе до 60 км от АЭС. Служба внешней дозиметрии на всех постах проводит отбор проб воздуха, почвы, воды, растительности и т.д.

На АЭС предусматриваются меры для полного исключения сброса сточных вод, загрязненных радиоактивными веществами. В водоемы разрешается отводить только строго определенное количество очищенной воды с концентрацией радионуклидов, не превышающей допустимый уровень для питьевой воды. В расчете на единицу производимой энергии АЭС сбрасывает в окружающую среду больше теплоты, чем ТЭС при аналогичных условиях. Поэтому для уменьшения степени энергетического загрязнения биосферы для АЭС большое значение имеет разработка методов эффективного использования сбросной теплоты.

Оценивая перспективы развития мировой атомной энергетики, большинство авторитетных международных организаций, связанных с исследованием глобальных топливно-энергетических проблем, предполагает, что после 2010-2020 гг. в мире вновь возрастет потребность в широком строительстве АЭС. По реалистическому варианту прогнозируется, что в середине XXI в. около 50 стран будут располагать атомной энергетикой. При этом предполагается, что к 2020 г. общая установленная электрическая мощность возрастет почти вдвое - до 570 ГВт, а к 2050 г. - до 1100 ГВт.

Введение

Производство энергии, являющееся необходимым средством для существования и развития человечества, оказывает воздействие на окружающую среду и здоровье человека. С одной стороны в быт и производственную деятельность человека настолько твердо вошла тепло- и электроэнергия, что человек даже и не мыслит своего существования без нее и потребляет само собой разумеющиеся неисчерпаемые ресурсы. С другой стороны, человек все больше и больше свое внимание заостряет на экономическом аспекте энергетики и требует экологически чистых энергетических производств. Это говорит о необходимости решения комплекса вопросов, среди которых перераспределение средств на покрытие нужд человечества, практическое использование в народном хозяйстве достижений, поиск и разработка новых альтернативных технологий для выработки тепло- и электроэнергии и т.д.

Энергетическое воздействие на окружающую среду

Каждая из отраслей энергетики (гидроэнергетика, теплоэнергетика и атомная энергетика) оказывает своё специфическое воздействие на окружающую среду.

Ш Теплоэнергетика.

Продукты сгорания топлива на ТЭС являются основным источником загрязнения окружающей среды. Энергетические установки всего мира ежегодно выбрасывают около 1 млрд. тонн золы и около 400 млн. тонн оксида серы. В результате сжигания топлива концентрация углекислого газа в атмосфере ежегодно увеличивается на 0,03%. В состав выбросов входит сернистый газ, который является очень сильным ядом. В местах, прилегающих к ТЭС, концентрация токсичных веществ превышает норму в 5 раз. Так же серьёзной экологической проблемой является сброс сточных вод в водоёмы. Со сточными водами сбрасывается целый комплекс загрязняющих веществ (нефтепродукты, хлориды, сульфаты и т.д.) .

ТЭС потребляют огромное количество кислорода. При современном топливном балансе потребление кислорода ТЭСами примерно в 5 раз превосходит его потребление всем населением Земли для дыхания. ТЭС, работающие на углу являются источником радиоактивности, а угольная зола содержит большое количество токсичных металлов (барий, мышьяк, марганец и др.).

Ш Гидроэнергетика.

Не вызывает загрязнения окружающей среды в обычном понимании. Однако плотины и создаваемые при них водохранилища нарушают экологический баланс водоёмов. Сегодня в мире насчитывается около 30000 водохранилищ. Процессы, происходящие в самом водохранилище, приводят к трансформации речных вод в полупроточные водные массы. Влияние водохранилищ на климат распространяется на 10-15 км.

На прилегающих к водохранилищу территориях повышается уровень грунтовых вод, что приводит к заболачиванию, трансформации почв, нарушению обитания животных и растений. Водохранилища влияют так же на тектонические процессы, способствуя возникновению и увеличению частоты землетрясений. В результате эксплуатации водохранилищ нарушается качество воды, а это оказывает влияние на использование всех видов водных ресурсов. Решением является развитие т.н. «малых» ГЭС (впервые в США). Возведение малых ГЭС происходит на высоком технологическом уровне, они рассчитаны на сравнительно небольшой расход воды. Малые ГЭС почти не изменяют природных условий.

Ш Ядерная энергетика.

Для выработки энергии необходима урановая руда, а в процессе работы образуются радиоактивные отходы. Очень актуальна проблема влияния АЭС на прилегающие территории, а так же проблема последствий аварий на АЭС. Радиоактивные материалы, используемые на АЭС имеют твёрдую, жидкую и газообразную форму. Твёрдые - это отработанное ядерное топливо.

Жидкие - это охлаждающая ядерный реактор вода, в которой находятся радионуклиды. Газообразные - радиоактивные инертные газы (криптон, ксенон).

Отходы низкой радиоактивности утилизируются на хранилищах на территории АЭС, а отходы высокой радиоактивности помещаются в специальные могильники. Радиоактивному воздействию подвергается персонал АЭС, а так же население территорий, прилегающих к ним.

1. Решение проблемы радиоактивного загрязнения окружающей среды при эксплуатации АЭС сводится к созданию замкнутых систем водопользования с многократными этапами очистки и следующим её возвратом.

Снижение газо-аэрозольных выбросов.

Снижение объёма поступающих на захоронение твёрдых отходов.

Создание максимально эффективной и многобарьерной защиты.

Так же весьма актуальной является проблема теплового загрязнения. Современные ТЭС и АЭС имеют КПД 33-40%, это значит, что около 60% тепла отводится водой системы охлаждения. Экологическая приемлемость АЭС тесно связана с выводом АЭС из эксплуатации в связи с аварией и модернизацией.

© 2024 aytodor.ru -- Портал для автомобилистов