Схемы установки абс. Принцип работы ABS в автомобиле Авс система торможения

Главная / Техосмотр

Стартовало в конце 70-х годов. Это была революционно новая тормозная система, которая была призвана повысить уровень безопасности автомобилистов в критических ситуациях связанных с экстренным торможением.

Отныне в любых дорожных ситуациях в самых критических условиях (мокрый или скользкий асфальт) колеса автомобиля не блокировались даже при экстренном торможении.

Система ABS состоит из:

  • Гидравлического блока;
  • Блока управления;
  • Колесные тормозные механизмы;
  • Сенсорные датчики числа оборотов.

Мозгом системы АБС как вы понимаете является блок управления, он принимает сигналы, которые поступают с сенсорных датчиков в виде количества оборотов колес. После этого полученные данные обрабатываются и на их основании блок делает вывод о том, скользит колесо или нет, замедляется или ускоряется. Принятие решения происходит молниеносно, после чего поступает сигнал в виде команды на магнитные клапаны гидравлического блока, которые собственно и выполняют эти команды.

Гидравлический блок расположен между тормозными цилиндрами суппортов и главным тормозным цилиндром (ГТЦ). Давление, которое поступает от ГТЦ, в тормозных цилиндрах суппортов преобразуется в нажимное усилие, за счет чего происходит прижатие тормозных колодок к тормозным дискам. В независимости от того с каким усилием водитель будет давить на педаль тормоза и в какой ситуации, давление в тормозной системе будет всегда оптимальным.

Вся прелесть системы ABS состоит в том, что она способна анализировать состояние каждого колеса и индивидуально подбирать оптимальное давление для недопущения блокировки колеса. Торможение до полной остановки, ABS регулирует при помощи давления в системе тормозного привода, так оно направлено непосредственно для осуществления торможения.

Регулировка давления происходит по такому принципу: сенсорные датчики количества оборотов подсчитывают обороты не только передних колес, но и дифференциала задней оси (в задне- и полноприводных моделях), и задних колес. Данные нужны блоку управления для того чтобы рассчитать окружную скорость колес. После завершения подсчета и определения того, что колесо или колеса заблокированы или находятся на грани блокировки, посылается команда магнитным клапанам и обратному насосу соответствующего(их) колес(а). Каждый из суппортов получает такое давление, которое позволяет обеспечить колесу максимально эффективное торможение и полное отсутствие эффекта блокировки. , оснащенные лишь одним сенсорным датчиком кол-ва оборотов на дифференциале задней оси, возможность блокировки колес определяется по одному наиболее расположенному к этому колесу, после чего определяется сила торможения для всего ряда. В результате этого колесо обладающее лучшим коэффициентом сцепления получает немного меньшее торможение, что не можете не увеличивать тормозной путь, однако при этом сохраняется намного лучшая управляемость автомобилем по сравнению с ТС без АБС.

Устройство которое управляет магнитными клапанами способно работать в трех различных положениях:

  • Первое - создание давления . ГТЦ связан с тормозным цилиндром, а это значит, что выпускной клапан закрыт, а впускной - открыт, следовательно давление может спокойно нарастать.
  • Второе - удержание давления . Прерывание связи между ГТЦ и тормозным цилиндром суппорта - состояние, когда давление в системе тормозного привода неизменно. То есть, на впускной клапан поступает сигнал, в результате этого клапан остается закрытым, не допуская тем самым увеличение давления.
  • Третье - снижение давления . Давление в системе тормозного привода снижается, поскольку на выпускной клапан поступает сигнал о необходимости сбросить давление, после чего он открывается. Вместе с тем давление снижается из-за включения обратного насоса, в результате впускной клапан закрывается.

Благодаря трем разным рабочим положениям система ABS способна повышать или понижать давление в системе тормозного привода по "ступенчатому" принципу, посредством шагового воздействия на магнитные клапаны. В рабочей системе эти положения способны меняться от 4 до 10 раз в секунду, это в большей степени зависит от типа дорожного покрытия.

В случае обнаружения неисправности в системе она в ту же минуту деактивируется, в тоже время продолжает работать в штатном режиме, однако без участия ABS. Само торможение существенно отличается и имеет значительно меньшую эффективность. О том, что система ABS вышла из строя, водитель узнает по аварийному индикатору, расположенному на панели приборов. Способ поиска и определения неисправности может отличаться, здесь в большей степени играет роль год выпуска и тип ABS.

Диагностика неисправностей системы ABS

Предохранители

  1. Визуальный осмотр блока предохранителей дает возможность исключить первую возможную причину неисправности. Перед тем как разобрать все остальные компоненты системы ABS.
  2. Осмотр всех соединений и разъемов на предмет потертостей или плохого контакта. Такие незначительные на первый взгляд неисправности могут вывести из строя всю систему или быть причиной ее некорректной работы. Убедитесь. что на деталях (сенсорные датчики числа оборотов, колесика датчиков) нет следов мех. повреждения и проверьте все ли в порядке с массой.

К большому сожалению, часто случается, что из-за неправильного подбора шин из строя выходит система ABS.

Чтобы исключить вероятность "обмана" датчиков проверьте

  1. Работоспособность тормозной системы, желательно на стенде, также проверьте ее герметичность.

Если после проведения вышеперечисленных проверок неисправность выявить не удалось, необходимо продолжить поиски.

Как показывает опыт, большинство неисправностей АБС связаны с нарушением соединения разъемов или обрывом проводников, для того чтобы подтвердить или опровергнуть эти неисправности, достаточно иметь у себя тестер или осциллоскоп.

Перед тем как приступать к тестированию, убедитесь в том, что полностью, для того чтобы при замерах можно было отследить вероятные скачки напряжения на разъемах или проводниках.

Сбои и в работе ABS иногда возникают из-за неисправности сенсорных датчиков числа оборотов, о которых далее пойдет речь.

Сенсорные датчики числа оборотов располагаются над импульсным ротором, связанным с приводным валом или со ступицей. Вокруг полюсного сердечника расположена обмотка, он связан с постоянным магнитом, за счет чего магнитное поле без труда проникает в индуктор. Изменение магнитного потока через обмотку и сердечник происходит за счет вращения импульсного ротора и связанной с этим сменой зубьев и межзубных впадин. Магнитное поле постоянно меняется, индуцируя в обмотке переменное напряжение, которое и можно измерить. Амплитуда и частота этого напряжения равна количеству оборотов колеса.

Чтобы произвести проверку сенсорного датчика числа оборотов вам необходимо провести замеры сопротивления и напряжение в системе. Сопротивление должна варьироваться в пределах от 800 Ом до 1200 Ом (брать во внимание паспортные величины). В случае если сопротивление равно 0 Ом, можно смело говорить о коротком замыкании, если же величина равна бесконечности – это обрыв.

В неисправности датчика нужно произвести его замену, главным критерии выбора в этом плане должно быть качество, так что отнеситесь серьезно к этой процедуре, чтобы деньги не были потрачены впустую. Помните, что от исправности и эффективности работы ABS и всей тормозной системы в целом, зависит ваша безопасность и безопасность других участников дорожного движения.

Рассмотрим состав и функционирование основных блоков ABS, реализующих алгоритм управления.

ABS представляет собой адаптивную систему, которая благодаря обратной связи измеряет параметры объекта управления - колеса (рис. 1).

Рис. 1.

ABS включает три основных функциональных элемента: датчик частоты вращения колеса (Д), электронно-решающий блок (ЭРБ) или блок управления (процессор) и модулятор давления (М). Элементы ABS включаются в контур штатного тормозного привода ТС, имеющий блок питания (БП) (компрессор или гидронасос), тормозной кран (ТК) или главный тормозной цилиндр для тормозных систем с гидравлическим приводом, тормозной механизм и объект управления - колесо.

Датчик частоты вращения колеса ТС предназначен для измерения скорости затормаживаемого колеса. Электронно-решающий блок (ЭРБ) обрабатывает информацию, поступающую от датчиков колес ТС, и в соответствии с алгоритмом управления ABS формирует и подает электрический сигнал управления на модулятор.

Модулятор в соответствии с сигналом управления осуществляет изменение давления в колесном цилиндре, обеспечивая фазу растормаживания колеса или его торможение.

Модулятор представляет собой быстродействующий электропневматический или гидравлический клапан в тормозном приводе затормаживаемого колеса, обеспечивающий снижение или увеличение давления в соответствии с сигналом управления. Функционально модулятор должен обладать высоким быстродействием в режиме циклического торможения в соответствии с сигналами управления, поступающими от ЭРБ. Конструктивно модуляторы выполнены как логические элементы двухпозиционного типа (см. рис. 7).

Модуляторы в зависимости от схемы ABS устанавливаются в контуре тормозного привода колеса или оси двух колес. Он включается в тормозной привод последовательно и не должен препятствовать прохождению рабочей жидкости или воздуха от тормозного крана при торможении водителем. Обычно модулятор имеет один вход и два выхода (к тормозному цилиндру колеса и в канал сброса воздуха или слива жидкости).

В настоящее время распространены ABS, работающие по трехфазовому циклу. Они, кроме фазы «торможение - растормаживание», имеют фазы выдержки давления в колесном цилиндре.

Рассмотрим на примере фирмы Bosch конструктивные особенности ABS (рис. 3), которая встраивается в качестве дополнительной в штатную тормозную систему и применяется на многих марках ТС. Заметим также, что и другие разработчики ABS используют аналогичные алгоритмы, известные по динамике управления движением колеса.


Рис. 3.1 - колесный индуктивный датчик; 2 - ротор колесного датчика; 3 - колесный цилиндр; 4 - регулятор тормозных сил; 5 - главный тормозной цилиндр; 6 - электрогидронасос; 7 - модулятор; 8 - бачок; 9 - блок управления; 10 - сигнальная лампа; Н/Р - нагнетательный и разгрузочный электромагнитные клапаны; - входные сигналы БУ; - выходные сигналы БУ; - тормозной трубопровод

Между главным тормозным цилиндром и колесными цилиндрами устанавливаются нагнетательные (Н) и разгрузочные (Р) электромагнитные клапаны, которые либо поддерживают на постоянном уровне, либо снижают давление в приводах колес или в контурах.

Электромагнитные клапаны приводятся в действие блоком управления, который обрабатывает информацию, поступающую от четырех колесных датчиков, и формирует в соответствии с алгоритмом работы ABS сигналы управления модулятором давления. На основе непрерывно поступающих данных о скорости вращения каждого колеса и ее изменениях БУ определяет момент возможного перехода колеса к блокированию. Задача ABS заключается в недопущении блокирования и юза колеса, чтобы исключить потерю устойчивости и сохранить управляемость ТС при торможении. Поэтому БУ преждевременно дает сигнал управления на сброс давления и включает гидронасос, который возвращает часть тормозной жидкости обратно в питательный бачок главного цилиндра.

В электрогидравлическом модуляторе ABS (рис. 4) скомпонованы электромагнитные клапаны, гидронасос с аккумуляторами давления жидкости, реле электромагнитных клапанов и реле гидронасоса.

Рис. 4.1 - электромагнитные клапаны; 2 - реле гидронасоса; 3 - реле электромагнитных клапанов; 4 - электрический разъем; 5 - электродвигатель гидронасоса; 6 - радиальный поршневой элемент насоса обратной подачи; 7 - аккумуляторы давления; 8 - глушители

В гидравлическом блоке (модуляторе) каждому тормозному цилиндру колеса соответствуют один впускной и один выпускной клапаны, которые управляют торможением в пределах своего контура.

Аккумулятор давления предназначен для приема тормозной жидкости при сбросе давления в тормозном контуре. Насос обратной подачи подключается, когда емкости аккумуляторов давления недостаточно, и увеличивает скорость сброса давления. Демпфирующие камеры принимают тормозную жидкость от насоса обратной подачи и гасят ее колебания.

В гидравлическом блоке устанавливается два аккумулятора давления и две демпфирующие камеры по числу контуров гидропривода тормозов.

Гидронасосы обратной подачи электрогидравлического модулятора могут быть как одноступенчатыми, так и двухступенчатыми (рис. 5).

В одноступенчатом насосе обратной подачи ABS (рис. 5, а, б) весь цикловой объем тормозной жидкости засасывается и, соответственно, протекает через трубопроводы за один ход поршня. Необходимое для этого разрежение всасывания достаточно высоко и увеличивается с ростом вязкости тормозной жидкости при низких температурах. Вследствие этого возникает кавитация и связанные с ней потери в производительности насоса.

В двухступенчатом насосе обратной подачи ABS (рис. 5, в, г) пространство за поршнем образует вторую рабочую камеру. Засасывание тормозной жидкости осуществляется в два приема и происходит во время как прямого, так и обратного хода поршня, что увеличивает вдвое объем засасываемой жидкости. Таким образом, весь цикловой объем засасываемой жидкости протекает через трубопровод непрерывно и необходимое для обеспечения этого разрежение засасывания оказывается ниже, что предотвращает появление кавитации.

Рис. 5. Гидронасос обратной подачи и схема его работы: а - всасывание рабочей жидкости одноступенчатым гидронасосом; б - нагнетание рабочей жидкости одноступенчатым гидронасосом; в - всасывание рабочей жидкости двухступенчатым гидронасосом; г - нагнетание рабочей жидкости одноступенчатым гидронасосом; 1 - линия нагнетания; 2 - поршень; 3 - цилиндр; 4 - линия всасывания; 5 - первая рабочая камера; 6 - вторая рабочая камера

Работа системы ABS Bosch 2S происходит по программе, подразделяющейся на три фазы: 1) нормальное, или обычное, торможение; 2) удержание давления на постоянном уровне; 3) сброс давления.

Фаза нормального торможения (рис. 6, а). При обычном торможении напряжение на электромагнитных клапанах отсутствует, из главного цилиндра тормозная жидкость под давлением свободно проходит через открытые электромагнитные клапаны и приводит в действие тормозные механизмы колес. Гидронасос не работает.

Рис. 6.а - фаза нормального торможения; б - фаза удержания давления на постоянном уровне; в - фаза сброса давления; 1 - колесный датчик; 2 - колесный (рабочий) цилиндр; 3 - нагнетательный насос; 4 - главный тормозной цилиндр; 5 - блок управления; 6 - аккумулятор давления; 7 - электромагнитный клапан; 8 - электрогидравлический модулятор; 9 - ротор колесного датчика;

Фаза удержания давления на постоянном уровне (рис. 6, б). При появлении признаков блокировки одного из колес БУ, получив соответствующий сигнал от колесного датчика, переходит к выполнению программы цикла удержания давления на постоянном уровне путем разъединения цилиндров - главного и соответствующего колесного. На обмотку электромагнитного клапана подается ток силой 2 А. Поршень клапана перемещается и перекрывает поступление тормозной жидкости из главного цилиндра. Давление в рабочем цилиндре колеса остается неизменным, даже если водитель продолжает нажимать на педаль тормоза.

Фаза сброса давления (рис. 6, в). Если опасность блокировки колеса сохраняется, БУ подает на обмотку электромагнитного клапана ток большей сипы: 5 А. В результате дополнительного перемещения поршня клапана открывается канал, через который тормозная жидкость сбрасывается в аккумулятор давления жидкости. Давление в колесном цилиндре падает. БУ выдает команду на включение гидронасоса, который отводит часть жидкости из аккумулятора давления. Педаль тормоза приподнимается, что ощущается по биению тормозной педали.

Для контроля давления и частоты вращения колеса автомобиля в тормозной системе ABS применяются датчики частоты вращения колеса (скорости) и датчики давления, описанные выше.

Принцип работы, аналогичный ABS 2S, применяется и для ABS 2Е фирмы Bosch (рис. 7), однако в этой системе применяется спиральный цилиндр для уравнивания давления в тормозном приводе задних колес автомобиля, который позволяет вместо четырех электромагнитных клапанов применять три. В состав модулятора, таким образом, входит три электромагнитных клапана, уравнивающий цилиндр, двухпоршневой нагнетательный гидронасос, два аккумулятора давления, реле насоса и реле электромагнитных клапанов.

Рис. 7.1 - электромагнитный клапан; 2 - аккумулятор давления; 3 - главный тормозной цилиндр; 4 - нагнетательный насос; 5 - перепускной клапан; 6 - поршень уравнительного цилиндра; 7 - электромагнитный клапан заднего моста; П п - переднее правое колесо; П л - переднее левое колесо; З п - заднее правое колесо; З л - заднее левое колесо

Система работает следующим образом. При обычном торможении тормозная жидкость под давлением из главного цилиндра поступает в рабочие цилиндры обоих передних колес и правого заднего колеса через три электромагнитных клапана, которые в исходном положении закрыты. В рабочий цилиндр левого заднего колеса тормозная жидкость подается через открытый перепускной клапан уравнивающего цилиндра. Когда возникает опасность блокировки одного из передних колес, БУ выдает команду на закрытие соответствующего электромагнитного клапана, предотвращая повышение давления в колесном цилиндре. Если опасность блокировки колеса не устранена, к электромагнитному клапану подводится ток, обеспечивающий открытие участка магистрали между рабочим цилиндром колеса и аккумулятором давления. Давление в приводе тормоза падает, после чего БУ выдает команду на включение гидронасоса, который перегоняет жидкость в главный цилиндр через уравнивающий цилиндр.

Когда возникает опасность блокировки одного из задних колес, давление тормозной жидкости будет регулироваться в обоих задних тормозах одновременно, с тем чтобы не допустить движения задних колес юзом.

Электромагнитный клапан привода правого заднего тормоза устанавливается в положение удержания постоянного давления и перекрывает участок магистрали между главным и колесным цилиндрами. На противоположные торцевые поверхности поршня 6 уравнивающего цилиндра начинает действовать давление различной величины, вследствие чего поршень со штоком переместится в сторону наименьшего давления (на рисунке - вверх) и закроет клапан 5, разъединив главный и колесный цилиндры левого заднего тормоза. Поршень уравнивающего цилиндра из-за образующейся разницы давления в рабочих полостях над ним и под ним всякий раз устанавливается в такое положение, при котором давление в приводах обоих задних тормозов одинаково.

Если сохраняется опасность блокировки задних колес, БУ запитывает электромагнитный клапан в контуре задних колес током в 5 А. Золотник электромагнитного клапана перемещается и открывает участок контура между рабочим цилиндром правого заднего тормоза и аккумулятором давления жидкости. Давление в контуре уменьшается. Гидронасос нагнетает тормозную жидкость в главный цилиндр через уравнивающий цилиндр. В результате снижения давления в пространстве над поршнем 6 происходит очередное его перемещение, сжимается пружина центрального клапана, увеличивается объем пространства под верхним поршнем. Давление в левом колесном тормозном цилиндре снижается. Поршень уравнивающего цилиндра вновь устанавливается в положение, соответствующее равенству давлений в приводах обоих задних тормозов. После устранения угрозы блокировки колес электромагнитный клапан возвращается в исходное положение. Поршень уравнивающего цилиндра под действием пружины также занимает исходное нижнее положение.

Более совершенной является ABS 5-й серии фирмы Bosch с блоком 10. Она относится к новому поколению систем ABS, представляя собой замкнутую гидравлическую систему, не имеющую канала для возврата тормозной жидкости в бачок, который питает главный тормозной цилиндр. Схема этой системы показана на примере автомобиля Volvo S40 (рис. 8).

Рис. 8.1 - обратные клапаны; 2 - клапан плунжерного насоса; 3 - гидроаккумуляторы; 4 - камеры подавления пульсации в системе; 5 - электродвигатель с эксцентриковым плунжерным насосом; 6 - бачок для тормозной жидкости; 7 - педаль рабочего тормоза; 8 - усилитель; 9 - главный тормозной цилиндр; 10 - блок ABS; 11 - выпускные управляемые клапаны; 12 - впускные управляемые клапаны; 13 - дросселирующие клапаны; 14–17 - тормозные механизмы

Электронные и гидравлические компоненты смонтированы как единый узел. В их число входит, кроме указанных в схеме: реле для включения электродвигателя плунжерного насоса 5 и реле включения впускных 12 и выпускных 11 клапанов. Внешними компонентами являются: сигнальная лампа работы ABS в приборной панели, которая загорается в случае возникновения неисправности в системе, а также при включении зажигания в течение 4 с; выключатель стоп-сигнала и датчики скорости вращения колес. Блок имеет вывод на диагностический разъем.

Дросселирующие клапаны 13 устанавливаются для снижения тормозного усилия на задних колесах с целью избежания их блокировки. В связи с тем что тормозная система имеет настройку по более «слабому» заднему колесу (это означает, что давление тормозов задних колес одинаковое, а его величина устанавливается по наиболее близкому к блокированию колесу), дросселирующий клапан устанавливается один на контур.

Тормозные механизмы 14–17 включают тормозные диски и однопоршневые суппорты с плавающей скобой и тормозными колодками, оборудованными скобами контроля износа фрикционных накладок. Тормозные механизмы задних колес аналогичны передним, но имеют сплошные тормозные диски (на передних - вентилируемые) и исполнительный механизм стояночного тормоза, вмонтированный в суппорт.

При нажатии педали тормоза 7 ее рычаг освобождает кнопку выключателя стоп-сигнала, который, срабатывая, включает лампочки стоп-сигналов и приводит ABS в дежурное состояние. Движение педали через шток и вакуумный усилитель 8 передается на поршни главного цилиндра 9. Центральный клапан во вторичном поршне и манжета первичного поршня перекрывают сообщение контуров с бачком 6 для тормозной жидкости. Это приводит к росту давления в тормозных контурах. Оно действует на поршни тормозных цилиндров в тормозных суппортах. В результате этого тормозные колодки прижимаются к дискам. При отпускании педали все детали возвращаются в исходное положение.

Если при торможении одно из колес близко к блокировке (о чем сообщает датчик частоты вращения), БУ перекрывает впускной клапан 12 соответствующего контура, что препятствует дальнейшему росту давления в контуре независимо от роста давления в главном цилиндре. В то же время начинает работать гидравлический плунжерный насос 5. Если вращение колеса продолжает замедляться, БУ открывает выпускной клапан 11, позволяя тормозной жидкости возвратиться в гидроаккумуляторы 3. Это приводит к уменьшению давления в контуре и позволяет колесу вращаться быстрее. Если вращение колеса чрезмерно ускоряется (по сравнению с другими колесами), для повышения давления в контуре БУ перекрывает выпускной клапан 11 и открывает впускной 12. Тормозная жидкость подается из главного тормозного цилиндра и с помощью плунжерного насоса 5 из гидроаккумуляторов 3. Демпферные камеры 4 сглаживают (подавляют) пульсации, возникающие в системе при работе плунжерного насоса.

Выключатель стоп-сигнала информирует модуль управления о торможении. Это позволяет модулю управления более точно контролировать параметры вращения колес.

Диагностический разъем служит для подсоединения Volvo System Tester при выполнении диагностики.

Недостатком системы ABS является то, что на рыхлой поверхности (песке, гравии, снеге) применение антиблокировочной системы увеличивает тормозной путь. На таком покрытии наименьший тормозной путь обеспечивается как раз при заблокированных колесах. При этом перед каждым колесом формируется клин из грунта, который и приводит к сокращению тормозного пути. В современных конструкциях ABS этот недостаток устранен - система автоматически определяет характер поверхности и для каждой реализует свой алгоритм торможения (расширенная антиблокировочная система ABSplus).

Система ABSplus представляет собой программное расширение в блоке управления ABS/ESP. Система ABSplus позволяет на дороге без твердого покрытия (например, щебень или песок) достичь сокращения тормозного пути до 20 %. ABSplus использует датчики системы ESP.

На основании данных датчиков ABS и блока управления ABS система распознает характер дорожного покрытия. Сокращение тормозного пути на дороге без твердого покрытия достигается за счет кратковременного контролируемого блокирования колес. При этом перед заблокированными колесами образуется буртик из материала дорожного покрытия, который оказывает тормозящее воздействие и тем самым укорачивает тормозной путь. Через определенные промежутки времени колеса периодически деблокируются и начинают вращаться, в результате чего сохраняется управляемость автомобиля.

2. Устройство и работа датчика ABS

В тормозной системе ABS применяются датчики частоты вращения колеса (скорости) и датчики давления.

В качестве датчиков частоты вращения колес в системе ABS применяются пассивные и активные колесные датчики.

Датчики обоих типов позволяют системе получать данные о скорости движения автомобиля и, что важнее, о частоте вращения отдельных колес. На основании разницы в скорости вращения отдельных колес система может, например, установить, не находятся ли разные колеса на дорожном покрытии с разным коэффициентом сцепления, что означало бы для автомобиля потенциальную опасность при торможении попасть в сложную динамическую ситуацию.

Пассивные датчики работают без собственного электропитания, чем и объясняется их название. Как правило, в таких датчиках используется индуктивный чувствительный элемент.

Для любого измерения частоты вращения необходимы два элемента: чувствительный и задающий. Чувствительный элемент датчика выполнен в виде катушки 3 с железным сердечником (магнитопроводом) 4 и соприкасающимся с ним постоянным магнитом 5. Задающий элемент 2 представляет собой кольцо с зубьями (задающее кольцо или ротор) (рис. 9).

Рис. 9.а - общий вид; б - низкая частота вращения; в - высокая частота вращения; 1 - магнитное поле; 2 - задающий элемент (металлическое кольцо с зубьями); 3 - катушка; 4 - железный сердечник (магнитопровод); 5 - постоянный магнит; 6 - чувствительный элемент; 7 - осциллограмма при низкой частоте вращения; 8 - осциллограмма при высокой частоте вращения

Любой железный объект, проходя через магнитное поле датчика, изменяет форму и напряженность этого поля. В результате изменения магнитного поля в катушке датчика, в соответствии с законом электромагнитной индукции, возникает ЭДС, измерение которой позволяет зафиксировать факт изменения магнитного поля. От принципа работы происходит и название датчиков такого типа - индуктивные.

Интенсивность магнитного потока, проходящего через обмотку, зависит от того, находится ли датчик напротив зуба на диске или напротив промежутка (пропуска зубьев). Поскольку магнитный поток концентрируется зубьями диска, из-за чего увеличивается магнитный поток через обмотку, то при подходе пропуска зубьев он ослабевает. Следовательно, при вращении зубчатого диска возникают колебания магнитного потока, которые, в свою очередь, генерируют синусоидальные колебания напряжения в электромагнитной обмотке, пропорциональные скорости изменения магнитного потока. Амплитуда колебаний переменного напряжения увеличивается строго пропорционально увеличению скорости вращения зубчатого диска.

Прохождение через магнитное поле датчика каждого из зубьев задающего ротора индуцирует, таким образом, напряжение в цепи катушки датчика. Подсчет числа импульсов напряжения за определенный интервал времени (частота) позволяет системе рассчитать частоту вращения или скорость колеса.

Преимуществом пассивных индуктивных датчиков частоты вращения является простота их конструкции. Недостаток же заключается в том, что для их работы необходимо с высокой точностью обеспечить определенный зазор между задающим ротором и датчиком. Кроме того, пассивные индуктивные датчики частоты вращения имеют большую массу и размеры, соответственно требуют много места для установки.

От частоты вращения задающего ротора зависит не только частота импульсов, но и их величина (напряжение), поэтому при небольших частотах вращения пассивный датчик дает сигнал меньшей величины, чем активный.

Активные датчики частоты вращения , в отличие от пассивных, используют для работы внешнее напряжение питания, которое составляет примерно 12 В. Работа чувствительных элементов активных датчиков частоты вращения основана на принципе эффекта Холла или на принципе магниторезистивного эффекта.

Активные датчики также состоят из двух компонентов: чувствительного и задающего (рис. 10). Чувствительный компонент включает датчик магнитного поля и электронную схему. Задающий элемент представляет собой пластмассовое кольцо, участки поверхности которого намагничены в противоположных направлениях (магнитное кольцо). Северный и южный полюса магнитов выполняют функции зубцов и впадин колеса.

Рис. 10.а - общий вид; б - низкая частота вращения; в - высокая частота вращения; 1 - задающий элемент; 2 - электронная схема датчика; 3 - корпус датчика; 4 - осциллограмма; 5 - датчик магнитного поля

Принцип действия основан на квантовомеханическом эффекте, создаваемом слоями ферромагнитного и неферромагнитного материала (сопротивление сильно увеличивается или ослабевает).

При прохождении датчика магнитного поля через изменяющееся магнитное поле изменяется и возникающая в нем ЭДС Холла, а для магниторезистивных датчиков изменяется его сопротивление. Чем быстрее намагниченные участки магнитного кольца проходят мимо датчика магнитного поля, тем быстрее изменяется и ЭДС (напряжение) Холла. Частота вращения колеса с датчиками этого типа, так же как и с пассивными, определяется исходя из частоты изменения напряжения.

Активные датчики дают одинаково точные результаты во всем диапазоне частот, поскольку сила их сигнала не зависит от измеряемой частоты, а определяется собственным током датчика. Кроме того, активный датчик имеет компактную конструкцию, что позволяет устанавливать его непосредственно в ступичном подшипнике. Цифровая обработка выходного сигнала дает дополнительные преимущества, например позволяет использовать датчик для определения направления вращения колеса и его остановки. Важным преимуществом также является высокая точность определения низких скоростей вращения.

Недостатком таких датчиков является трудность проверки их исправности с помощью омметра.

Датчики частоты вращения колеса могут крепиться на валу привода колеса, на валу привода конических шестерен для заднеприводных моделей автомобиля, на поворотных цапфах (рис. 11, а) и внутри ступицы колеса (рис. 11, б).

В качестве датчиков давления в системе ABS применяются пьезоэлектрические и емкостные датчики.

Рис. 11.а - крепление индуктивного датчика на поворотной цапфе; б - крепление индуктивного датчика внутри ступицы колеса; 1 - тормозной диск; 2 - передняя ступица; 3 - защитный кожух; 4 - винт с внутренним шестигранным зацеплением; 5 - датчик; 6 - поворотная цапфа; 7 - фланец крепления колеса; 8 - шарики; 9 - кольцо датчика; 10 - фланец крепления к подвеске

крепится к гидравлическому блоку и служит для определения и передачи в ЭБУ значения давления в тормозной системе при торможении. По полученному значению БУ рассчитывает тормозные усилия на колесах и продольную силу, действующую на ТС. При необходимости выполнения управляющего цикла полученное значение используется блоком управления для расчета сил, действующих на ТС в повороте.

Основными компонентами датчика являются пьезоэлектрический элемент 2, находящийся под давлением тормозной жидкости, и электронная часть 1 (рис. 12).

Рис. 12.

Под действием давления тормозной жидкости распределение заряда в пьезоэлектрическом элементе меняется, и величина напряжения зависит от давления в тормозной системе.

В качестве датчика давления жидкости в тормозной системе может использоваться также емкостный датчик (рис. 13).

Рис. 13.а - общая схема датчика; б - увеличение давления жидкости; в - снижение давления жидкости; 1 - датчик; s 1 , s 2 - расстояние между пластинами; C 1 , C 2 - емкость конденсатора

Конденсатор обладает способностью накапливать и удерживать определенный электрический заряд. Расстояние s между двумя пластинами обеспечивает некоторую емкость конденсатора C.

Одна из пластин является неподвижной. Вторая пластина может перемещаться под воздействием давления, производимого тормозной жидкостью.

При воздействии давления на подвижную пластину расстояние между двумя пластинами уменьшается и становится равным s 1 , а емкость конденсатора при этом увеличивается и становится равной C 1 .

В случае понижения давления пластина отходит обратно под действием пружины, емкость конденсатора снова уменьшается. Следовательно, изменение емкости прямо связано с изменением давления.

Система ABS, которая устанавливается практически на все современные автомобили, как и другие сложные детали и компоненты, подвержена различным неисправностям. Штатная АБС работает постоянно, активируясь в момент поворота ключа зажигания, а информация, которую собирает антиблокировочная система используется другими системами, к примеру, ESP. Сразу после запуска двигателя на приборной панели зажигается индикатор АБС - это свидетельствует о начале самотестирования. Если неполадок не обнаруживается, индикатор гаснет.

Несмотря на то, что самодиагностика ABS выполняется регулярно, исправлять какие-либо неполадки приходится самостоятельно, поскольку неисправности в системе отмечаются не так и редко. Если индикатор АБС постоянно горит или же периодически вспыхивает во время движения - это является поводом проверить работоспособность системы, что можно сделать либо самостоятельно, либо обратившись в сервис. Конечно, игнорирование проблемы не приведет к тому, что автомобиль останется без тормозов, но эффективность экстренного торможения будет существенно снижена.

Основные элементы АБС

Начиная диагностику АБС своими руками, необходимо понимать из каких элементов состоит вся система. К числу ее основных элементов относится:

  • блок управления;
  • гидравлический блок;
  • механизмы торможения колес;
  • датчики, измеряющие скорость вращения колес.

Кроме этого, имеется и большое количество соединительных проводов, которые также нуждаются в периодической проверке , особенно, если часто зажигается лампа АБС на панели.

Блок управления

Основная часть системы, которая принимает сигналы со всех датчиков, анализирует их, и отдает команды управления блоку гидравлики. Этот блок используют и другие системы помощи водителю, к примеру, система курсовой устойчивости. Проблемы с центральным блоком возникают достаточно редко, поскольку он неплохо защищен от негативного воздействия окружающей среды. Но стоит отметить, что блок весьма чувствителен к перепадам напряжения, а при недостаточно заряженном аккумуляторе может отключиться совсем.

Гидравлический блок

Включает в себя главный тормозной цилиндр, магнитные клапаны и гидроаккумулятор. По сигналу центрального блока, который распознал блокировку колес, открывается магнитный клапан, и излишек тормозной жидкости немедленно переходит в специальный резервуар - гидроаккумулятор, что приводит к падению давления в системе , и не позволяет колесам заблокироваться полностью, даже если педаль тормоза выжата до упора.

Индукционные датчики

Именно они выполняют самую грязную, но ответственную работу, позволяя постоянно осуществлять мониторинг скорости вращения всех колес. Такие датчики устанавливаются на каждой ступице. По сути они представляют собой обычные индукционные катушки, работающие в паре с зубчатым колесом. Сигналы с датчиков поступают в центральный блок, где анализируются. Датчикам приходится работать в наиболее тяжелых условиях, поэтому при возникновении неполадок в работе АБС, проверку целесообразно начинать именно с них.

С чего начинается самостоятельная диагностика

Прежде чем затевать серьезную проверку АБС своими силами, тем более если опыта в этом деле явно недостаточно, следует обратить внимание на блок предохранителей. Если все они визуально в порядке, можно дополнительно проверить их тестером, после чего не торопясь и очень внимательно осмотреть все доступные разъемы и соединения проводов. Очень часто даже небольшие недостатки в виде нарушенной изоляции, болтающихся контактов или их сильного загрязнения приводят к тому, что электрическая цепь периодически размыкается, и АБС отключается.

Проверка сопротивления датчика

Для этого потребуется тестер/мультиметр:


Проверка напряжения

Для такой проверки тестер переключается в режим вольтметра. Алгоритм проверки аналогичен вышеописанному: на вывешенном колесе, которое необходимо вручную вращать со скоростью примерно один оборот в секунду снимаются показания прибора. Его показания в норме будут составлять 0,25-1,2 В , а увеличение скорости вращения колеса автоматически повышает показания тестера. Как проверить самый уязвимый элемент АБС - датчик самостоятельно, можно посмотреть на видео:

Другие способы тестирования антиблокировочной системы

Если проверка колесных датчиков тестером не выявила их неисправностей, но у автовладельца остаются сомнения в адекватности работы АБС, или в процессе эксплуатации авто периодически загорается контрольная лампа, можно проверить АБС по-другому. К примеру, при помощи осциллографа. Он позволяет точно измерить уровень сопротивления, а также амплитуду, мгновенно и точно выявив возможные неисправности датчика. К сожалению, это крайне сложное и дорогостоящее оборудование, поэтому используется оно в специализированных сервисных центрах.

Помочь в определении проблемы, если они имеются, может и бортовая система самодиагностики, активирующаяся каждый раз в момент запуска двигателя. При обнаружении ошибок система выводит на монитор бортового компьютера набор букв и цифр, расшифровку которых можно найти либо в инструкции к автомобилю, либо в интернете. Если простейшие мероприятия по диагностике АБС не привели к желаемому результату, и проблему не удается решить самостоятельно, лучше не рисковать, и обратиться к специалистам.

Внимание! Самостоятельная проверка АБС будет результативна, только если аккумуляторная батарея полностью заряжена, в противном случае результаты тестирования могут оказаться некорректными.

Самые распространенные неисправности АБС

Проблем с антиблокировочной системой может быть достаточно много, но среди часто встречающихся можно выделить четыре.


Если обнаружена неисправность

Если проведенная самодиагностика АБС точно определила неисправную часть системы, со стороны водителя потребуется принять решение - менять поврежденный элемент на новый или же отремонтировать старый. Стоит сразу оговориться, что даже проведенная проверка ABS, если она выполнялась человеком впервые без должного опыта и соответствующего оборудования, вовсе не означает, что вердикт «неисправность» окончательный.

Так, если система говорит о том, что неисправен один из датчиков на колесе, не следует торопиться его менять, предварительно следует проверить все контакты и ведущие к нему провода - проблема часто заключается в этих элементах. Если же диагностика антиблокировочной системы говорит о том, что неисправен ее центральный блок, он подлежит либо ремонту специалистами, либо замене, если восстановление невозможно. Если же программа диагностики ABS указывает на датчики, а все контакты в порядке, неисправное устройство вполне можно заменить на новое самостоятельно.

При прямолинейном движении во время торможения автомобиля на его действуют разные силы: вес автомобиля, тормозная сила и боковая сила. Величина сил зависит от множества факторов, таких как скорость движения автомобиля, размеры колес, состояние и конструкция шин и дорожного полотна, конструкции тормозной системы и ее технического состояния.

Рис. Силы, действующие на колесо при торможении:
G – вес автомобиля; FB – тормозная сила; FS – боковая сила; νF – скорость автомобиля; α – угол увода; ω – угловая скорость

Во время прямолинейного движения автомобиля с постоянной скоростью разницы в скоростях вращения колес не возникает При этом не возникает также разницы между приведенной скоростью движения автомобиля νF и согласованной с ней усредненной скоростью νR вращения колес, т.е. νF = νR. Под усредненной скоростью вращения колес понимается величина

νR = (νR1+ νR2 + νR3 + νR4)/4 ,
где νR1…νR4 - скорости вращения каждого колеса в отдельности.

Но как только начинается процесс интенсивного торможения, приведенная скорость автомобиля νF, начинает превышать усредненную скорость νR вращения колес, так как кузов «обгоняет» колеса под действием силы инерции массы автомобиля, т.е. νF >νR.

В такой ситуации между колесами и дорогой возникает явление равномерного умеренного скольжения Это скольжение является рабочим параметром тормозной системы и определяется как:

λ = (νF — νR)/ νF 100%

Физически рабочее скольжение в отличие от аварийного юза реализуется за счет прогибания протектора колесных шин, сдвига мелких фракций на поверхности дороги, и за счет амортизации автомобильной подвески. Эти факторы удерживают автомобиль от юза и отображают полезную суть рабочего скольжения колеса при его торможении. Ясно, что при этом замедление вращения колеса происходит постепенно и управляемо, а не мгновенно, как при блокировке.

Величина λ названа коэффициентом скольжения и измеряется в процентах. Если λ = 0%, то колеса вращаются свободно, без воздействия на них дорожного сопротивления трению. Коэффициент скольжения λ = 100% соответствует юзу колеса, когда оно переходит в заблокированное состояние. При этом значительно снижаются тормозная эффективность, устойчивость и управляемость автомобиля при торможении.

При появлении эффекта рабочего скольжения, при котором все еще имеет место нормальное качение колес между ними и дорогой возникает равномерно возрастающее сопротивление трению выражаемое коэффициентом сцепления в направлении движения μHF, которое является функцией от рабочего скольжения γ и создает силу торможения автомобиля FB = K μHFG. К – конст­руктивный коэффициент пропорциональности, зависящий от состояния протектора шин, тормозных колодок тормозных дисков и тормозных суппортов.

На рисунке представлена зависимость величины относительного скольжения колеса от коэффициента сцепления в направлении движения μHF и коэффициента сцепления в поперечном направлении μS при торможении на сухом бетонном покрытии.

Рис. Зависимость коэффициента сцепления от скольжения колес.

Как видно из рисунке величина относительного скольжения колеса λ достигает своего максимального значения при определенных значениях коэффициента сцепления в направлении движения μHF, при уменьшении коэффициента сцепления в поперечном направлении μS. Для большинства дорожных покрытий при значениях γ, а значит и тормозная сила, в интервале от 10% до 30% μHF достигает максимальной величины и это значение называют критическим (λ)кp. В этих пределах и коэффициент сцепления в поперечном направлении μS имеет достаточно высокое значение, что обеспечивает устойчивое движение автомобиля при торможении, если на автомобиль действует боковая сила.

Вид кривых коэффициента сцепления в направлении движения μHF, и коэффициента сцепления в поперечном направлении μS зависит в значительной степени от типа и состояния дорожного покрытия и шин.

Важно заметить, что при малых γ (от 0% до 7%) сила торможения линейно зависит от скольжения.

При экстренном торможении значительное усилие на педаль тормоза может вызвать блокировку колес. Сила сцепления шин с дорожным покрытием при этом резко ослабевает, и водитель теряет управление автомобилем.

Назначение и устройство АБС

Антиблокировочные системы (АБС) тормозов призваны обеспечить постоянный контроль за силой сцепления колес с дорогой и соответственно регулировать в каждый данный момент тормозное усилие, прилагаемое к каждому колесу. АБС производит перераспределение давления в ветвях гидропривода колесных тормозов так, чтобы не допустить блокирования колес и вместе с тем достичь максимальной силы торможения без потери управляемости автомобиля.

Основной задачей АБС является поддерживание в процессе торможения относительного скольжения колес в узких пределах вблизи λкp. В этом случае обеспечиваются оптимальные характеристики торможения. Для этой цели необходимо автоматически регулировать в процессе торможения подводимый к колесам тормозной момент.

Появилось много разнообразных конструкций АБС, которые решают задачу автоматического регулирования тормозного момента. Независимо от конструкции, любая АБС должна включать следующие элементы:

  • датчики, функцией которых является выдача информации, в зависимости от принятой системы регулирования, об угловой скорости колеса, давлении рабочего тела в тормозном приводе, замедлении автомобиля и др.
  • блок управления, обычно электрон­ный, куда поступает информация от датчиков, который после логической обработки поступившей информации дает команду исполнительным механизмам
  • исполнительные механизмы (моду­ляторы давления), которые в зависи­мости от поступившей из блока управ­ления команды снижают, повышают или удерживают на постоянном уровне давление в тормозном приводе колес

Рис. Схема управления АБС:
1 – исполнительный механизм; 2 – главный тормозной цилиндр; 3 – колесный тормозной цилиндр; 4 – блок управления; 5 – датчик вращения скорости колеса

Процесс регулирования с помощью АБС торможения колеса – цикличес­кий. Связано это с инерционностью самого колеса, привода, а также элементов АБС. Качество регулирования оценивается по тому, насколько АБС обеспечивает скольжение тормозящего колеса в заданных пределах. При большом размахе циклических колеба­ний давления нарушается комфортабельность при торможении «дерга­ние», а элементы автомобиля испытывают дополнительные нагрузки. Качество работы АБС зависит от принятого принципа регулирования, а также от быстродействия системы в целом. Быстродействие определяет циклическую частоту изменения тормозного момента. Важным свойством АБС должна быть способность приспосабливаться к изменению условий торможения (адаптивность) и, в первую очередь, к изменению коэффициента сцепления в процессе торможения.

Разработано большое число принципов (алгоритмов функционирова­ния), по которым работают АБС. Они различаются по сложности, стоимости реализации и по степени удовлетворе­ния поставленным требованиям. Сре­ди них наиболее широкое применение получил алгоритм функционирования по замедлению тормозящего колеса.

Тормозная динамика автомобиля с АБС зависит от принятой схемы установки элементов этой системы. С точ­ки зрения тормозной эффективности, наилучшей является схема с автономным регулированием каждого колеса. Для этого необходимо установить на каждое колесо датчик, а в тормозном приводе – модулятор давления и блок управления. Эта схема наиболее сложная и дорогостоящая.

Существуют более простые схемы АБС. На рисунке б показана схема АБС с регулируемым торможением двух задних колес. Для этого используются два колесных датчика угловых скоростей и один блок управления. В такой схеме применяют так называе­мое низко- или высокопороговое регулирование Низкопороговое регулиро­вание предусматривает управление тормозящим колесом, находящимся в худших по сцеплению условиях («слабым» колесом). В этом случае тормозные возможности «сильного» колеса недоиспользуются, но создается равенство тормозных сил, что способствует сохранению курсовой устойчивости при торможении при некотором снижении тормозной эффективности. Вы­сокопороговое регулирование, т. е. управление колесом, находящимся в лучших по сцеплению условиях, дает более высокую тормозную эффектив­ность, хотя устойчивость при этом несколько снижается. «Слабое» колесо при этом способе регулирования циклически блокируется.

Рис. Схемы установки АБС на автомобиле

Еще более простая схема приведе­на на рисунке в. Здесь используются один датчик угловой скорости, размещенный на карданном валу, один модулятор давления и один блок управления. По сравнению с предыдущей эта схема имеет меньшую чувствительность.

На рисунке г приведена схема, в которой применены датчики угловых скоростей на каждом колесе, два моду­лятора, два блока управления. В такой схеме может применяться как низко-, так и высокопороговое регулирование. Часто в таких схемах используют смешанное регулирование (например, низ­копороговое для колес передней оси и высокопороговое для колес задней оси). По сложности и стоимости эта схема занимает промежуточное положение между рассмотренными.

Процесс работы АБС может прохо­дить по двух- или трехфазовому циклу.

При двухфазовом цикле:

  • вторая фаза – сброс давления

При трехфазо­вом цикле:

  • первая фаза – нарастание давления
  • вторая фаза – сброс давления
  • третья фаза – поддержание давления на постоянном уровне

При установке на легковом автомобиле АБС возможны замкнутый и ра­зомкнутый тормозные гидроприводы.

Рис. Схема модулятора давления гидростатического тормозного привода

Замкнутый или закрытый (гидро­статический) привод работает по прин­ципу изменения объема тормозной сис­темы в процессе торможения. Такой привод отличается от обычного уста­новкой модулятора давления с дополнительной камерой. Модулятор работает по двухфазовому циклу:

  • Первая фаза – нарастание давления обмотка электромагнита 1 отключена от источника тока. Якорь 3 с плунжером 4 находится под действием пружины 2 в крайнем правом положе­нии. Клапан 6 пружиной 5 отжат от своего гнезда. При нажатии на тор­мозную педаль давление жидкости, создаваемое в главном цилиндре (вывод II), передается через вывод I к рабочим тормозным цилиндрам. Тормозной момент растет.
  • Вторая фаза – сброс давления: блок управления подключает обмотку электромагнита 1 к источнику питания Якорь 3 с плунжером 4 переме­щается влево, увеличивая при этом объем камеры 7. Одновременно кла­пан 6 также перемещается влево, перекрывая вывод I к рабочим тор­мозным цилиндрам колес. Из-за увеличения объема камеры 7 давление в рабочих цилиндрах падает, а тормозной момент снижается. Далее блок управления дает команду на нараста­ние давления, и цикл повторяется.

Разомкнутый или открытый тормозной гидропривод (привод высокого давления) имеет внешний источник энергии в виде гидронасоса высокого давления, обычно в сочетании с гидроаккумулятором.

В настоящее время отдается предпоч­тение гидроприводу высокого давления, более сложному по сравнению с гидростатическим, но обладающим необходимым быстродействием.

Рис. Двухконтурный тормозной привод с АБС:
1 – колесный датчик угловой скорости; 2 – модуля­торы; 3 – блоки управления; 4 – гидроаккумулято­ры; 5 – обратные клапаны; 6 – клапан управления; 7 – гидронасос высокого давления; 8 – сливной ба­чок

Тормозной привод имеет два контура, поэтому необходима установка двух авто­номных гидроаккумуляторов. Давление в гидроаккумуляторах поддерживается на уровне 14…15 МПа. Здесь применен двух­секционный клапан управления, обеспечи­вающий следящее действие, т. е. пропор­циональность между усилием на тормозной педали и давлением в тормозной системе. При нажатии на тормозную педаль дав­ление от гидроаккумуляторов передается к модуляторам 2, которые автомати­чески управляются электронными блоками 3, получающими информацию от колесных датчиков 1. На рисунке приведена схема двухфазового золотникового модулятора давления для тормозного гидропривода высокого давления. Рассмотрим фазы ра­боты этого модулятора:

  • Фаза 1 нарастания давления: блок управления АБС отклю­чает катушку соленоида от источника тока. Золотник и якорь соленоида уси­лием пружины перемещены в верхнее по­ложение. При нажатии на тормозную педаль клапан управления сообщает гид­роаккумулятор (вывод I) с нагнетатель­ным каналом модулятора давления. Тор­мозная жидкость под давлением поступает через вывод II к рабочим цилиндрам тормозных механизмов. Тормозной момент растет.
  • Фаза 2 сброса давления: блок управления сообщает катушку соле­ноида с источником питания. Якорь соле­ноида перемещает золотник в нижнее поло­жение. Подача тормозной жидкости в ра­бочие цилиндры прерывается: вывод II рабочих тормозных цилиндров сообщается с каналом слива III. Тормозной момент снижается. Блок управления дает команду на нарастание давления, отключая катуш­ку соленоида от источника питания, и цикл повторяется.

Рис. Схема работы двухфазного модулятора высокого давления:
а – фаза 1; б – фаза 2

В настоящее время более распространены АБС, работающие по трехфазовому цик­лу. Примером такой системы является довольно распространенная система АБС 2S фирмы Бош.

Эта система встраивается в качестве дополнительной в обычную тормозную систему. Между главным тормозным цилиндром и колесными цилиндрами устанавливается нагнетательные (Н) и разгрузочные (Р) электро­магнитные клапаны, которые либо поддерживает на постоянном уровне, либо снижают давление в приводах колес или в контурах. Электромагнитные клапаны приводятся в действие блоком управления, обрабатывающим информацию, поступающую от четырех колесных датчиков.

Блок управления, куда непрерывно поступают данные о скорости вращения каждого колеса и ее изменениях, определяет момент возникно­вения блокировки, затем, при необходимости, производит сброс давления, включает гидронасос, который возвращает часть тормозной жидкости обратно в питательный бачок главного цилиндра.

Рис. Функциональная схема АБС Bosch 2S:
1 – блок управления; 2 – модулятор; 3 – главный тормозной цилиндр; 4 – бачок; 5 – электрогидронасос; 6 - колесный цилиндр; 7 – ротор колесного датчика; 8 – колесный индуктивный датчик; 9 – сигнальная лампа; 10 – регулятор тормозных сил; Н/Р – нагнетательный и разгрузочный электромагнитные клапаны; — .-. входные сигналы БУ; — ­–­ — – выходные сигналы БУ; –––– тормозной трубопровод

В модуляторе АБС скомпонованы электро­магнитные клапаны, гидронасос с аккумуляторами давления жидкости, реле электромагнитных клапанов и реле гидронасоса.

Рис. Электрогидравлический модулятор:
1 – электромагнитные клапаны; 2 – реле гидронасоса; 3 – реле электромагнитных клапанов; 4 – электрический разъем; 5 – электродвигатель гидронасоса; 6 – радиаль­ный поршневой элемент насоса; 7 – аккумулятор давления; 8 – глушитель

Работа системы происходит по программе, подразделяющейся на три фазы: 1 – нормальное или обычное торможение; 2 – удержание давления на постоянном уровне; 3 – сброс давления.

Фаза нормального торможения

При обычном тормо­жении напряжение на электромагнитных клапанах отсутствует, из главного цилиндра тормозная жидкость под давлением свободно проходит через открытые электромагнитные клапаны и приводит в действие тормозные механизмы колес. Гидронасос не работает.

Рис. Фазы торможения:
а) фаза нормального торможения; б) фаза удержания давления на постоянном уровне; в) фаза сброса давления; 1 – ротор колесного датчика; 2 – колесный датчик; 3 – колесный (рабочий) цилиндр; 4 – электрогидравлический модулятор; 5 – электро­магнитный клапан; 6 – аккумулятор давления; 7 – нагне­тательный насос; 8 – главный тормозной цилиндр; 9 – блок управления

Фаза удержания давления на постоянном уровне

При появлении признаков блокировки одного из колес БУ, получив соответствующий сигнал от колесного датчика, переходит к выполнению программы цикла удержания давления на постоян­ном уровне путем разъединения главного и соответствующего колесного цилиндра. На обмотку электромагнитного клапана подается ток силой 2 А. Поршень клапана перемещается и перекрывает поступление тормозной жидкости из главного цилиндра. Давление в рабочем цилиндре колеса остается неизменным, даже если водитель продолжает нажимать на педаль тормоза.

Фаза сброса давления

Если опасность блокировки колеса сохраняется, БУ подает на обмотку электромагнитного клапана ток большей сипы: 5 А. В результате дополнительного перемещения поршня клапана открывается канал, через который тормозная жидкость сбрасывается в аккумулятор давления жидкости. Давление в колесном цилиндре падает. БУ выдает команду на включение гидронасоса, который отводит часть жидкости из аккумулятора давления. Педаль тормоза приподни­мается, что ощущается по биению тормозной педали.

Индуктивный колесный датчик состоит из обмотки 5 и сердечника 4. Зубчатое колесо 6 имеет частоту вращения, равную частоте вращения колеса. При вращении колеса 6, выполненного из ферромагнитного железа, изменяется магнитный поток в зависимости от прохождения зубьев ротора, что приводит к изменению переменного напряжения в катушке. Частота изменения напряжения зависит от частоты вращения зубчатого колеса, т. е. частоты вращения колеса автомобиля. Воздушный зазор и размеры зубца оказывают большое влияние на амплитуду сигнала. Это позволяет определить положение колеса по интервалам между зубцами в пределах половины или трети. Сигнал от индуктивного датчика передается в электронный блок управления.

Рис. Индуктивный датчик:
1 – постоянный магнит; 2 – корпус; 3 – крепление датчика; 4 – сердечник; 5 – обмотка; 6 – зубчатое колесо

Индуктивные датчики могут крепиться на валу привода колеса, на валу привода конических шестерен для заднеприводных моделей автомобиля, на поворотных цапфах и внутри ступицы колеса.

Рис. Крепление индуктивного датчика на поворотной цапфе:
1 – тормозной диск; 2 – передняя ступица; 3 – защитный кожух; 4 – винт с внутренним шестигранным зацеплением; 5 – датчик; 6 – поворотная цапфа

Рис. Крепление индуктивного датчика внутри ступицы колеса:
1 – фланец крепления колеса; 2 – шарики; 3 – кольцо датчика ABS; 4 – датчик; 5 – фланец крепления к подвеске.

Более совершенны активные датчики, применяемые для измерения частоты вращения колеса. Чувствительный элемент электронной ячейки 2 такого датчика изготовлен из материала, электропроводность которого зависит от напряженности магнитного поля. При вращении задающего диска 3 происходят изменения магнитного поля. Вызываемые изменяющимся магнитным полем колебания проходящего через чувствительный элемент тока преобразуются в электронной схеме в колебания напряжения, выводимого на внешние контакты датчика. При вращении задающего диска установленный около него датчик вырабатывает прямоугольные импульсы, частота которых соответствует частоте вращения диска. Преимуществом данного датчика по сравнению с ранее применяемыми системами является точная регистрация частоты вращения при ее снижении вплоть до остановки колеса.

Рис. Активный датчик:
1 – корпус датчика; 2 – электронная ячейка датчика; 3 – задающий диск

Как правило, на щитке приборов должна находиться контрольная лампочка, которая должна гаснуть при работающем двигателе или если скорость автомобиля превышает 5 км/час. Она также загорается, если одно из колес пробуксовывает более 20 секунд или если электроснабжение выдает напряжение менее 10 вольт. Контрольная лампочка системы преду­преждает водителя о том, что из-за неисправ­ности системы произошло ее автоматическое отключение, при этом однако тормозная система про­должает функционировать как обычная тормозная система без АБС.

Аналогичный принцип работы применяется и для АБС 2Е фирмы Бош, однако в этой системе применяется уравнивающий цилиндр для уравнивания давления в тормозном приводе задних колес, который позволяет вместо четырех электромагнитных клапанов применять три клапана. В состав модулятора входят таким образом не четыре, а три электромагнитных клапана, уравнивающий цилиндр, двухпоршневой нагнетательный гидронасос, два аккумулятора давления, реле насоса и реле электромагнитных клапанов.

Система работает следующим образом. При обычном торможении тормозная жидкость под давлением из главного цилиндра поступает в рабочие цилиндры обоих передних колес и правого заднего колеса через три электромагнитных клапана, которые в исходном положении закрыты. В рабочий цилиндр левого заднего колеса тормозная жидкость подается через открытый перепускной клапан уравнивающего цилиндра. Когда возникает опасность блокировки одного из передних колес, БУ выдает команду на закрытие соответствующего электромагнитного клапана, предотвращая повышение давления в колесном цилиндре. Если опасность блокировки колеса не устранена, к электромагнитному клапану подводится ток, обеспечивающий открытие участка магистрали между рабочим цилиндром колеса и акку­мулятором давления. Давление в приводе тормоза падает, после чего БУ выдает команду на включение гидронасоса, который перегоняет жидкость в главный цилиндр через уравнивающий цилиндр.

Рис. АБС 2Е фирмы Бош в фазе обычного торможения:
1 – главный тормозной цилиндр; 2 – электромагнитный клапан; 3 – аккумулятор давления; 4 – электромагнитный клапан заднего моста; 5 – нагнетательный насос; 6 – перепускной клапан; 7 – поршень уравнительного цилиндра; Ппр – переднее правое колесо; Пл – переднее левое колесо; Зпр – заднее правое колесо; Зл – заднее левое колесо

Когда возникает опасность блокировки одного из задних колес, давление будет регулироваться в обоих задних тормозах одновременно, с тем чтобы не допустить движения задних колес юзом.

Электромагнитный клапан привода правого заднего тормоза устанавливается в положение удержания постоянного давления и перекрывает участок магистрали между главным цилиндром и колесным цилиндром. На противоположные торцевые поверх­ности поршня 7 уравнивающего цилиндра начинает действовать давление различной величины, вследствие чего поршень со штоком переместится в сторону наименьшего давления (на рисунке – вверх) и закроет клапан 6, разъединив главный цилиндр и колесный цилиндр левого заднего тормоза. Поршень уравнивающего цилиндра из-за образующейся разницы давления в рабочих полостях над ним и под ним всякий раз устанавли­вается в такое положение, при котором давление в приводах обоих задних тормозов одинаково.

Если сохраняется опасность блокировки задних колес, БУ запитывает электромагнитный клапан в контуре задних колес током в 5 А. Золотник электромагнитного клапана перемещается и открывает участок контура между рабочим цилиндром правого заднего тормоза и аккумулятором давления жидкости. Давление в контуре уменьшается. Гидронасос нагнетает тормозную жид­кость в главный цилиндр через уравнивающий цилиндр. В результате снижения давления в пространстве над поршнем 7 происходит очередное его перемещение, сжимается пружина центрального клапана, увеличивается объем пространства под верхним поршнем. Давление в левом колесном тормозном цилиндре снижается. Поршень уравнивающего цилиндра вновь устанавливается в положение, соответствующее равенству дав­лений в приводах обоих задних тормозов. После устранения угрозы блокировки колес электромагнитный клапан возвращается в исходное положение. Поршень уравни­вающего цилиндра под действием пружины также занимает исходное нижнее положение.

Более совершенной является АБС 5-й серии фирмы Бош с блоком 10, которая относится к новому поколению систем АБС, представляя собой замкнутую гидравлическую систему, не имеющую канала для возврата тормозной жидкости в бачок, питающий главный тор­мозной цилиндр. Схема этой системы показана на примере автомобиля Вольво S40.

Рис. Схема АБС 5-й серии фирмы Бош:
1 – обратные клапаны; 2 – клапан плунжерного насоса; 3 – гидроаккумулятор; 4 – камера подавления пульсации в системе; 5 – электро­двигатель с эксцентриковым плунжерным насосом; 6 – бачок для тормозной жидкости; 7– педаль ра­бочего тормоза; 8 – усилитель; 9 – главный тормозной цилиндр; 10 – блок АБС; 11 – выпускные управ­ляемые клапаны; 12 – впускные управляемые клапаны; 13 – дросселирующий клапан; 14-17 – тормозные механизмы

Электронные и гидравлические компонен­ты смонтированы как единый узел. В их чис­ло входят, кроме указанных в схеме: реле для включения электродвигателя плунжер­ного насоса 5 и реле включения впускных 12 и выпускных 11 клапанов. Внешними ком­понентами являются: сигнальная лампа работы АБС в приборной панели, которая загорается в случае возникновения неисправ­ности в системе, а также при включении за­жигания в течение четырех секунд; выключа­тель стоп-сигнала и датчики скорости враще­ния колес. Блок имеет вывод на диагностиче­ский разъем.

Дросселирующий клапан 13 устанавливается для снижения тормозного усилия на задних колесах с целью избежания их блокировки. В связи с тем, что тормозная сис­тема имеет настройку по более «слабому» заднему колесу (это означает, что давление тормозов задних колес одинаковое, а его ве­личина устанавливается по наиболее близко­му к блокированию колесу), дросселирую­щий клапан устанавливается один на контур.

Тормозные механизмы 14-17 включают тормозные диски и однопоршневые суппорты с плавающей скобой и тормозными колодка­ми, оборудованными скобами контроля из­носа фрикционных накладок. Тормозные ме­ханизмы задних колес аналогичны передним, но имеют сплошные тормозные диски (на передних — вентилируемые) и исполнительный механизм стояночного тормоза, вмонтированный в суппорт.

При нажатии педали 7 тормоза ее рычаг ос­вобождает кнопку выключателя стоп-сигнала, который, срабатывая, включает лампочки стоп-сигналов и приводит АБС в дежурное со­стояние. Движение педали через шток и вакуумный усилитель 8 передается на поршни главного цилиндра 9. Центральный клапан во вторичном поршне и манжета первичного поршня перекрывают сообщение контуров с бачком 6 для тормозной жидкости. Это приводит к росту давления в тормозных контурах. Оно действует на поршни тормозных цилиндров в тормозных суппортах. В результате этого тормозные колодки прижимаются к дискам. При отпускании педали все детали возвращаются в исходное положение.

Если при торможении одно из колес близ­ко к блокировке (о чем сообщает датчик ча­стоты вращения), блок управления перекры­вает впускной клапан 12 соответствующего контура, что препятствует дальнейшему рос­ту давления в контуре независимо от роста давления в главном цилиндре. В то же время начинает работать гидравлический плун­жерный насос 5. Если вращение колеса про­должает замедляться, блок управления от­крывает выпускной клапан 11, позволяя тор­мозной жидкости возвратиться в гидроакку­муляторы 3. Это приводит к уменьшению давления в контуре и позволяет колесу вра­щаться быстрее. Если вращение колеса чрез­мерно ускоряется (по сравнению с другими колесами) для повышения давления в кон­туре блок управления перекрывает выпуск­ной клапан 11 и открывает впускной 12. Тор­мозная жидкость подается из главного тор­мозного цилиндра и с помощью плунжерно­го насоса 5 из гидроаккумуляторов 3. Демпферные камеры 4 сглаживают (подав­ляют) пульсации, возникающие в системе при работе плунжерного насоса.

Выключатель стоп-сигнала информирует модуль управления о торможении. Это поз­воляет модулю управления более точно кон­тролировать параметры вращения колес.

Диагностический разъем служит для под­соединения Volvo System Tester при выполне­нии диагностики.

Если автомобиль оборудован системой DSA (система динамической стабилизации), то модуль управления системой DSA получа­ет данные о частоте вращения колес, которые необходимы для измерения пробуксовывания. Эту информацию модуль управления систе­мой DSA получает с модуля управления сис­темой АБС. Для этой цели служат три комму­никационные линии. Система DSA не исполь­зует тормоза для контроля пробуксовывания.

Внутренние реле (для насоса и клапанов) имеют отдельные соединения, защищенные плавкими предохранителями.

При включении зажигания система прове­ряет электрическое сопротивление всех ком­понентов. Во время этой проверки горит сиг­нальная лампа. После завершения проверки (4 с) лампа должна погаснуть.

При движении автомобиля выполняется проверка элек­тродвигателя насоса, его реле, впускных и выпускных клапанов на скорости 6 км/ч. На скорости 40 км/ч осуществляется провер­ка работы колесных датчиков. Во время рабо­ты системы насос функционирует в не­прерывном режиме.

Во время движения в дождь или снегопад при скорости движения более 70 км/час и включенном стеклоочистителе лобового стекла тормозные накладки передних тормозов периодически (каждые 185 секунд) кратковременно (на 2,5 секунды) прижимаются к тормозным дискам с минимальным давлением (0,5…1,5 кгс/см2). В результате этого накладки и диски очищаются, и улучшается эффективность торможения.

Что такое датчик ABS и как работает такая система? Как она устроена и что означает эта аббревиатура? Обо всём этом будет рассказано в этой статье, написанной исключительно для водителей и автомобилистов.

Что представляет собой система ABS

ABS - это аббревиатура, которую расшифровывали на различных языках мира. Но и немцы, и англичане, и русские считают ABS системой, которая не даёт блокировать автоматически колёса при резком торможении. Благодаря системе регулируется усилие, которое оказывают тормозные механизмы. И главной целью, которую ставит перед собой , является предоставление автомобилисту возможности управлять транспортным средством, сохраняя устойчивость и обеспечивая наиболее эффективное замедление.

Понятно, что при торможении, да тем более резком, автомобиль, у которого заблокируются колёса, - перевернётся. Для того чтобы этого не произошло, и была придумана система ABS.

Видео о безопасном торможении:

Идея создания ABS

Ещё до нашествия Гитлера на Европу идея создать подобную систему родилась в головах передовых инженеров того времени. И планировали применить такую систему не где-нибудь, а в самой авиации. Но материалы и технологии, используемые в тот период времени, к сожалению, не давали возможности этого сделать.

В 1964 году инженеры компании Мерседес взялись за это дело, засучив рукава. Помогали им в этом специалисты компаний Bosch и Teldix. И в первую очередь были собраны все патенты, а также отчёты за последние годы, где так или иначе упоминалось о системе ABS.

Исследования, так успешно начатые, стали приносить результаты. Инженеры определились с общей схемой создания новой системы, способной стать прорывом в технологиях будущего. Расчёт скорости вращения колёс возлагали на датчики, которые тогда ещё ставились только на переднюю ось. Эти самые измерения датчик посылал в блок управления, а при необходимости давал поправки ИУ настроить давление в тормозной системе, а вернее, в какой-либо её части. Но всё выходило гладко только на бумаге. Но как известно, все гениальные открытия человечества были сделаны сначала на бумаге, а уже потом перенесены на практическое поле деятельности.

Вначале система ABS в реальных ситуациях работала с ошибками. Реагировала на изменение сцепления колёс с запозданиями и, одним словом, была ненадёжной.

Первого успеха инженеры системы ABS достигли в 1967 году, когда заменили датчики на механической основе, снабжённые колёсиками, бесконтактными вариантами. в этом случае использовался наподобие электромагнитной индукции. И преимущества здесь были явно налицо: система ABS ложно не срабатывала, была устойчива к механическим воздействиям и долгое время не изнашивалась.

Уже в середине двадцатого столетия компания Мерседес представила на обозрение общественности первую систему ABS с электронным управлением, предназначенную для автобусов, грузовиков и . Новые датчики передавали блоку управления сигналы, а тот управлял гидравликой, то есть размещённым модулем между суппортами и тормозным цилиндром.

Сегодня даже самая современная система ABS повторяет принцип самой первой модели. Всё происходит за счёт работы датчиков, которые отслеживают скорость вращения колёс и дают информацию об этом БУ. А тот сравнивает эти значения и подаёт соответствующие команды электромагнитным составляющим, в частности клапану гидромодуля.

Сами клапаны предназначены, для того чтобы регулировать давление в тормозной системе. И делается это своеобразно - по паре на каждый из контуров. Когда происходит резкое и неожиданное торможение, составляющие системы АБС с частотой в несколько десятков раз в секунду начинают двигаться и происходит замедление . При работе клапанов водители часто слышат их стрекот, означающий, что колёса переживают процесс блокировки/разблокировки. И давление при этом в нескольких контурах или в одном из них мгновенно поднимается, а затем тут же стравливается. Что касается колодок, то они соответственно сжимают и отпускают диск, обеспечивая надёжное торможение. Вот так работает ABS.

Понятно, что самым главным при управлении автомобилем становится своевременное торможение. И удержать автомобиль в таких условиях очень сложно. Но вот система ABS прекрасно с этим помогает справиться.

По сути, система ABS - это довольно сложная антиблокировочная система, представляющая электронно-механическую цепь, не позволяющую автомобилю блокировать колёса при резком торможении. И особенно нужна система ABS при вождении на дорогах, где колёса транспортного средства недостаточно хорошо цепляются за дорожное покрытие. Другими словами, когда едешь по гравию, снегу, снегу или даже по льду. Идеальная система безопасности на дорогах России, где более половины месяцев зима.

Никаких сложностей на автомобиле с ABS не вызывает. Можно ехать на высокой скорости и не бояться резких торможений, ведь тормозной путь заметно снижается.

Если нужно узнать, оборудован ли ваш автомобиль такой системой, достаточно повернуть ключ зажигания. И тогда загорится надпись на панели приборов. Ещё систему ABS можно определить и по другим параметрам, в том числе и по слишком чувствительной тормозной педали.

Из чего она состоит

Обычная система ABS состоит из трёх составляющих. Важным является блок ABS, расположенный впереди и взаимодействующий с тормозной системой особым образом. Благодаря специальным трубкам металлического типа и происходит соединение блока с тормозами.

Кроме этого, компьютер является частью системы. Он обрабатывает данные, полученные от датчиков, и посылает соответствующие сигналы на основной блок.

И наконец, датчики частоты вращения, без которых ни одна из современных систем ABS работать бы не могла.

Главное преимущество системы ABS

На практике посредством многочисленных тестов было доказано, что система ABS позволяет достичь более короткого тормозного пути. У водителя машины повышается в несколько раз способность управлять транспортным средством, сохраняя чёткий контроль. Кроме того, система даёт возможность проводить манёвры даже в моменты резкого торможения. Сочетая два вышеописанных фактора, автомобиль, наделённый системой ABS, получает огромное преимущество перед обычными транспортными средствами.

Некоторые водители с большим стажем правильно тормозить умеют и без системы ABS. Они контролируют момент срыва колёс самостоятельно, как это делают мотоциклисты. Таким образом, ослабляется усилие при остановке на грани блокировки и торможение получается не резким, а прерывистым. Но такой эффект, получаемый при немалых затратах сил и энергии, сравним разве что с одноканальной ABS. А есть ещё, как известно, и многоканальное ABS, рассчитанное на контролирование тормозного усилия на каждое из колёс по отдельности. Такой вид ABS позволяет не только эффективно тормозить, но и стабилизировать поведение транспортного средства в сложных условиях. Например, при езде на снежной обледенелой дороге, когда сцепление колёс с дорожным покрытием неравномерно.

В любом случае для новичка-водителя даже одноканальное ABS станет отличным помощником. Он научится спокойно тормозить, не боясь о последствиях. Ему будет нужно просто приложить максимум усилия к тормозной педали или рукоятке, сохраняя при этом возможность манёвра.

Работа системы ABS в некоторых случаях, как и говорилось выше, приводит к увеличению тормозного пути. Это очень важно, к примеру, если ездить на летних шинах. Кроме того, на рыхлых поверхностях, таких как глубокий снег или гравий, заблокированные при торможении колёса зарываются глубоко в поверхность, а это даёт дополнительное замедление.

Интересно, что на некоторых автомобилях ставят систему АБС, которая автоматически отключается. По сути, это очень удобно и эффективно. И даже ставится на некоторые модели ABS специальный алгоритм торможения, позволяющий достигать эффективного замедления без потери управляемости. То же происходит и при полной блокировке. Что касается типа поверхности, то он может быть установлен даже вручную водителем при помощи подключения специальных датчиков.

Технология Брейк Ассист

Эта технология, применяемая для систем ABS, появилась ещё в 1994 году на популярном тогда и сегодня Ауди. Вскоре, познав все преимущества технологии, за Ауди потянулись и другие компании: Фольксваген, Мерседес, Инфинити и т. д.

Как работает ABS на авто, так и технология Брейк Ассист позволяет водителю эффективно тормозить. По статистике большинство водителей в экстренной ситуации на тормоз полностью не нажимают или же, наоборот, отпускают педаль тормоза. И тормозной путь из-за этого получается заметно больше, чем мог быть. Технология Брейк Ассист как раз и предназначена, для того чтобы автоматизировать этот процесс.

Видео о минусах АБС:

И, напоследок. Система ABS - это , который делает практически всё, связанное с тормозной системой автомобиля вместо человека. И делает это в некоторых случаях даже лучше, чем человек.

© 2024 aytodor.ru -- Портал для автомобилистов